Закрепление грунтов – Методы закрепления грунтов – основные принципы закрепления грунтов, полезная информация от компании «ПК Анкер Гео»

Содержание

Методы закрепления грунтов – новости строительства и развития подземных сооружений

Закрепление грунтов — это искусственное изменение строительных свойств грунтов различными физико-химическими способами. Такое преобразование обеспечивает увеличение их прочности, устойчивости, уменьшение сжимаемости и водонепроницаемости. Существует два основных способа закрепления грунтов: поверхностное и глубинное.

Поверхностное закрепление выполняют на глубину до 1 м. При этом способе грунт предварительно разрыхляется, перемешивается с закрепляющими материалами (вяжущие, цемент, известь и др.) и затем уплотняется. Глубинное закрепление предусматривает обработку грунтов без нарушения их естественного сложения путем инъекции закрепляющих материалов,  термообработки   и   замораживания, с использованием предварительно пробуренных скважин, шпуров или забиваемых инъекторов. Инъекцию производят с использованием вяжущих, силикатных материалов и смол.

Методы глубинного укрепления грунтов

Для повышения несущей способности грунтовых оснований применяют следующие способы искусственного закрепления грунтов:

•    Химический (цементация, битумизация и смолизация)
•    Термический
•    Искусственное замораживание
•    Электрический
•    Электрохимический
•    Механический

Химическое закрепление грунтов

Химическое закрепление грунтов инъекцией в строительстве в настоящее время осуществляется способами силикатизации, смолизации и цементации.  Наиболее распространенная и популярная из технологий по закреплению грунтов – это цементация. Цементация — это процесс нагнетания в грунт жидкого цементного раствора или цементного молока по ранее забитым полым сваям. Цементация применяется для закрепления крупно- и среднезернистых песков, трещиноватых скальных пород путем нагнетания в грунт цементного раствора через инъекторы. В зависимости от размера трещины и пористости песка применяют суспензию с отношением цемента к воде от 1:1 до 1:10, а также цементные растворы с добавками глины, песка и других инертных материалов.

Радиус закрепления грунтов составляет в скальных грунтах — 1,2-1,5 м, в крупных песках — 0,5-0,75 м, в песках средней крупности — 0,3-0,5 м. Цементацию производят нисходящими зонами; нагнетание прекращают при достижении заданного поглощения или когда снижение расхода раствора достигнет 0,5 л/мин в течение 20 мин при заданном давлении.

При горячей битумизации в трещины породы  или в гравийно-гравелистый грунт нагнетают через скважины горячий битум, который, застывая, придает грунтам водонепроницаемость. При холодной битумизации, в отличие от горячей, нагнетают 35—45-процентную тонкодисперсную битумную эмульсию. Способ используется для очень тонких трещин в скальных грунтах, а также  для уплотнения песчаных грунтов.

Смолизацию применяют для закрепления мелких песков и выполняют путем нагнетания через инъекторы в грунт смеси растворов карбамидной смолы и соляной кислоты.

Силикацией закрепляют песчаные и лессовые грунты, нагнетая в них химические растворы. Через систему перфорированных трубок-инъекторов в грунт последовательно нагнетаются растворы силиката натрия и хлористого кальция. Получающийся в результате реакции гель кремниевой кислоты придает грунту значительную прочность и водонепроницаемость.

Термическое закрепление грунтов

Термическое закрепление является результатом сжигания топлива (газообразного, жидкого, сжиженных газов) непосредственно в скважинах, пробуренных на всю глубину закрепляемого грунта. Закрепление грунта в скважине происходит под действием пламени, а в теле массива — от раскаленных газов, проникающих сквозь поры грунта. В результате вокруг скважины образуется столб обожженного грунта, диаметр которого зависит от продолжительности обжига и количества топлива. Этим способом можно закрепить грунты и устранить их просадочность на глубину до 15 м, доведя прочность в среднем до 1 МПа.

Искусственное замораживание грунтов является универсальным и надежным методом временного закрепления слабых водонасыщенных грунтов. Сущность данного метода заключается в том, что через систему замораживающих скважин, расположенных по периметру и в теле будущей выработки, пропускается хладоноситель с низкой температурой, который, отнимая от окружающего грунта тепло, превращает его в ледогрунтовый массив, обладающий полной водонепроницаемостью и высокой прочностью.

В зависимости от вида хладоносителя различаются два способа замораживания: рассольный и сжиженным газом. В первом случае рассол-хладоноситель представляет собой высококонцентрированный раствор хлористого кальция или натрия, предварительно охлажденный в испарителе холодильной машины до температуры минус 25° С. В качестве хладагента в холодильных машинах используются аммиак, фреон или жидкий азот. Во втором случае в качестве хладоносителя сжиженных газов используется главным образом жидкий азот, имеющий температуру испарения минус 196° С.

Электрический способ закрепления грунтов

Электрическим способом закрепляют влажные глинистые грунты. Способ заключается в использовании эффекта электроосмоса, для чего через грунт пропускают постоянный электрический ток с напряженностью поля 0,5-1 В/см и плотностью 1-5 А/кв.м. При этом глина осушается, уплотняется и теряет способностью к пучению.

Электрохимический способ отличается от предыдущего тем, что одновременно с электрическим током через трубу, являющуюся катодом, в грунт вводят растворы химических добавок (хлористый кальций и др.). Благодаря этому интенсивность процесса закрепления грунта возрастает.

Механический способ укрепления грунтов

Механический способ укрепления грунтов имеет следующие разновидности: устройство грунтовых подушек и грунтовых свай, вытрамбовывание котлованов и др.

Устройство грунтовых подушек

заключается в замене слабого грунта основания другим, более прочным, для чего слабый грунт удаляют, а на его место насыпают прочный грунт и послойно утрамбовывают. При устройстве грунтовых свай в слабый грунт забивают сваю-лидер. В полученную после извлечения этой сваи скважину засыпают грунт и послойно уплотняют. Вытрамбовывание котлованов осуществляется с помощью тяжелых трамбовок, подвешенных на стреле башенного крана. Этот способ менее сложен, чем способ грунтовых подушек, поскольку не требует замены грунта основания. Также уплотнение котлованов значительных размеров может осуществляться гладкими или кулачковыми катками, трамбующими машинами, виброкатками и виброплитами.

Расскажите о нашей статье своим друзьям,
поделившись ссылкой в социальной сети

undergroundexpert.info

Закрепление грунтов оснований – Фундаменты

Навигация:
Главная → Все категории → Фундаменты

Закрепление грунтов оснований
Закрепление грунтов оснований

Закрепление грунтов основывается на существенном изменении их физико-механических свойств без изменения положения твердых частиц, входящих в состав грунтов, в отличие от уплотнения, при котором частицы, сближаясь, образуют более плотную укладку, Уменьшая деформативность и увеличивая несущую способность.

Изменение физико-механических свойств достигается с помощью использования вяжущих материалов, которые устанавливают новые более прочные связи между частицами грунта. В некоторых случаях при использовании большого количества вяжущих материалов грунты основания превращаются в плотную полускальную породу.

Закреплению поддаются относительно хорошо фильтрующие грунты, поскольку оно связано с внедрением в поры вяжущих материалов. Способ закрепления выбирают в зависимости от грунтовых условий района строительства, а также производственных возможностей его выполнения.

Для закрепления песков и макропористых грунтов в практике современного градостроительства применяют силикатизацию. В зависимости от грунтовых условий используют два метода силикатизации — двухрастворный и однорастворный.

Двухрастворный метод силикатизации основывается на образовании, в результате взаимодействия растворов силиката натрия и хлористого кальция, геля кремниевой кислоты, который является вяжущим материалом. Данный метод применяют для закрепления песков средней крупности и крупных с коэффициентом фильтрации fc/=2…80 м/сут.

При закреплении в грунт последовательно нагнетаются с помощью инъекторов упомянутые выше растворы. Инъектор представляет собой перфорированную трубу длиной 1 м с наконечником (рис. 12.6, в), который погружается в грунт забивкой или вибрированием, причем в грунт сначала нагнетается раствор силиката натрия. При необходимости получения закрепленного массива грунта толщиной более 1 м инъектор погружают еще на 1 м и вновь закрепляют грунт. Повторяя такие заходки сверху вниз, достигают требуемой глубины закрепления, затем через этот же инъектор подают раствор хлористого кальция непоследовательно поднимая инъектор на 1 м заходками снизу вверх, укрепляют столб грунта радиусом 0,3… 1,0 м (рис. 12.6, б). Для закрепления массива грунта инъекторы располагают в шахматном порядке с расстоянием между рядами 1}5Я, а между соседними инъекторами 1,73Л (рис. 12.6, в). На рис. 12.6, б показано закрепление грунта тремя заходками. Закрепленный таким образом грунт имеет кубиковую прочность 1,5…3,5 МПа.

Рис. 12.6, Схема закрепления грунтов:
а — инъектор для закрепления; 6 — размещение инъекторов при трек заходках; в — размещение инъекторов в плаве; 1 — оголовок для забивки; 2 — соединительный тройник; 3 — муфта для соединения; 4 — перфорированная труба; 5 — наконечник; б — зона закрепления грунта; 7 —

положения инъектора

При закреплении слабо фильтрующих грунтов, каковыми являются пески пылеватые и мелкие, а также лёссовые грунты, используют метод однорастворной силикатизации.

Просадочные лессовые грунты, имеющие коэффициент фильтрации £/=0,1…2 м/сут, закрепляют раствором силиката натрия, так как в их составе имеются химические вещества, способные вступать с ним в реакцию, тем самым закрепляя грунт.

Во время производства работ контролируются концентрация и качество закрепляющих растворов, а также процесс закрепления грунта.

В слабо фильтрующих, слабых грунтах (илах, глинах и суглинках, находящихся в текучем и текучепластичном состоянии) при kf= =0,1 м/сут используют электрохимическое закрепление грунтов. Этот метод основывается на использовании электроосмоса для принудительного введения в грунты растворов силиката натрия и хлористого кальция, для чего через грунты с £/=0,005…0,1 (пески пылеватые, супеси и легкие суглинки) пропускается электрический ток, вызывающий движение воды от анода к катоду. В качестве анода используют перфорированную трубу, в полость которой последовательно вводят химические укрепляющие вещества, а через катод откачивают воду. Под действием электрического тока увеличивается скорость проникновения закрепляющих растворов, скорость протекания физико-химических реакций по образованию нерастворимых соединений и необратимых коллоидов, а также уменьшается влажность около анодов. Эти факторы способствуют омо-ноличиванию грунта и улучшению строительных характеристик на Длительный период времени, т. е. приводят к его закреплению.

При коэффициентах фильтрации Лу

Для закрепления грунтов, обладающих большой водопроницаемостью, в частности трещиноватой скальной породы, гравия, гальки и крупного песка, применяют цементацию, которая основана на нагнетании раствора цементного вяжущего под большим давлением. Закрепление цементацией в основном используют для уменьшения водопроницаемости грунтов, но иногда к нему прибегают и для их закрепления. Для цементации применяют чаще всего цементный раствор (смесь цемента с водой), в некоторых случаях в раствор добавляют песок.

Водоцементное отношение зависит от пористости грунта. Чем меньше трещины или поры, тем более жидкий применяют раствор. Обычно на 10…50 ч. воды используют 1ч. цемента, принимаемые по массе.

Цементацию используют и для уменьшения водопроницаемости и повышения прочности самого фундамента. Для этого в кладке фундамента делают специальные шпуры, устанавливая в них трубки, через которые нагнетается раствор. Проникая в поры бетона и твердея, он увеличивает прочность и снижает водопроницаемость.

В последнее время получил распространение метод закрепления с помощью смолизации грунтов. Он базируется на применении синтетических смол, получаемых с помощью различных химических технологий. Нагнетаемые в поры грунта и твердеющие там смолы превращают грунты оснований в относительно прочное твердое тело. В качестве вяжущего материала применяют карбамидную смолу с отвердителями, реже используют фенольные и фурановые смолы. Карбамидную смолу применяют для закрепления мелких и пылева-тых песков, а также лёссовых грунтов. В качестве отвердителя используют раствор соляной кислоты, с которым смола соединяется непосредственно перед инъецированием. При содержании пылевато-глинистых частиц в грунте в пределах 1…3% в него предварительно нагнетается раствор соляной кислоты концентрацией 3…5%.

Для улучшения закрепления в настоящее время начинают применять электросмолизацию.

Для закрепления просадочных лёссовых грунтов получил широкое распространение термический метод. Этому виду закрепления поддаются также глины и суглинки, если они имеют удовлетворительную воздухопроницаемость. Термозакрепление основывается на явлении увеличения прочности структурных связей грунтов под действием высоких температур, которые получают в результате сжигания в предварительно пробуренных скважинах солярового масла, мазута, природного газа или других горючих материалов. Для поддержания процесса горения в грунт под давлением 0,015…0,05 МПа подают воздух.

Процесс горения регулируют таким образом, чтобы в скважине поддерживалась температура 700…900 °С, и проникающие в поры грунта газы поддерживали его температуру не ниже 300°, так как при более низкой температуре просадочные свойства лёссов не ликвидируются, а при температуре свыше 900 °С происходит спекание грунта и оплывание стенок скважины, что препятствует поступлению горячих газов в грунт.

Для термического закрепления грунтов пробуривают скважины диаметром до 200 мм, глубиной 6,.Л5 ми более в зависимости от мощности слоя, подлежащего закреплению. Если сжигание топлива происходит в верхней части скважины (рис. 12.7, а), то столб обожженного грунта образует усеченный конус, поэтому для придания обжигаемому массиву более равномерной формы или уширения его нижней части обжиг производят на отдельных по глубине зонах (рис. 12.7, б) с использованием специальной трубы, снабженной асбестовым сальником или отсекателем, который изолирует затруб-ное пространство. Обжиг начинают с нижней части скважины с перестановкой сальника по высоте.

Рис. 12.7. Схема установки для термического закрепления: 1 — емкость с жидким горючим; 2 — насос для подачи топлива; 3 — форсунка; 4 — трубопровод; J — компрессор для подачи воздуха; б — слой лёссового грунта; 7 — зона закрепления; 8 — непросадочныЁ грунт; 9 — отсекатель из ножей; 10 — трубка для подачи топлива; 11 — тоже, воздуха

Обжиг продолжается в течение 5… 10 дней, расход топлива при этом составляет 80..Л 80 кг жидкого топлива на 1 м высоты скважины, вокруг которой образуется столб закрепленного грунта диаметром 1,5…3,0 м с кубиковой прочностью 1,0….3,0 МПа.

Стоимость термического закрепления грунта значительно ниже, чем для описанных выше методов закрепления (силикатизации и электрохимического).

Для уменьшения водопроницаемости грунтов используют закрепление с помощью битумизации и глинизации.

Трещиноватые скальные породы закрепляют с помощью битумизации путем закачивания через скважины расплавленного битума или битумной эмульсии с коагулянтом. Битум, заполняя трещины, существенно снижает водопроницаемость.

В песчаных грунтах для уменьшения фильтрации используют глинизацию с помощью нагнетания глинистой суспензии. Попадая в сравнительно небольшие поры песчаных грунтов, суспензия вызывает заиливание песков, повышая тем самым их водонепроницаемость.

Следует заметить, что из-за высокой стоимости закрепление грунтов используют сравнительно редко и только в тех случаях, когда иное решение по устройству фундаментов невозможно или связано с еще большими затратами материальных средств.

Похожие статьи:
Основания под фундаменты зданий и сооружений

Навигация:
Главная → Все категории → Фундаменты

Статьи по теме:

Главная → Справочник → Статьи → Блог → Форум

stroy-spravka.ru

Методы закрепления грунтов – основные принципы закрепления грунтов, полезная информация от компании «ПК Анкер Гео»

Закрепление грунтов — это мера, при которой уменьшение сжимаемости и повышение прочности происходит за счёт увеличения сцепления между частицами, а не за счёт разрушения структуры грунта с последующим повышением его плотности. Из наиболее популярных методов закрепления грунтов можно выделить:

  • термический способ закрепления;
  • электрохимический способ закрепления;
  • глинизация грунтов;
  • цементация грунтов;
  • силикатизация грунтов.

Для каждого отдельного случая метод подбирается индивидуально с учётом типа грунта. Рассмотрим 4 основных принципа закрепления.

1. Термический способ закрепления

Данный метод применяется преимущественно к маловлажным грунтам глинистого типа, имеющим высокую степень проницаемости. Его удобно применять, когда ожидаемая просадка превышает по своим значениям допустимую величину осадки сооружения.

В процессе термической обработки прочность связей между частицами макропористого грунта увеличивается, за счёт чего грунт становится непросадочным.

Рекомендуемая температура обработки макропористого глинистого грунта — 300-400 °C. При таких условиях состав скелета грунта быстро меняется: наблюдается существенное сокращение глинистых и шепелеватых частиц. Происходит самое настоящее спекание частиц грунта между собой, за счёт чего и увеличивается его несущая способность.

Термическая обработка способна повысить прочность грунта на одноосное сжатие до 100 кг/см2. В полевых условиях данный метод производится при помощи скважин диаметром 120-200 мм. Чем больше диаметр, тем лучше проникают продукты горения в подвергаемый закреплению массив. Максимальная глубина, на которую может быть закреплён грунт таким способом, составляет 20 м.

Для того чтобы обеспечить возможность нагнетания воздуха в пробуренные скважины, они герметично закрываются затворами. Таким образом, внутри грунта образуется камера сгорания.

2. Цементация грунтов

Данный метод применяется для закрепления обломочных скальных отложений крупно- и среднезернистых песков, галечниковых отложений, а также для заполнения образованных в грунтах карстовых пустот.

Цементация грунтов производится следующим образом: через перфорированные трубы (инъекторы) нагнетается цементный раствор. Производится данная процедура только в том случае, если в основании грунта коэффициент фильтрации превышает 80 м/сутки. Определить данный показатель поможет оборудование для зондирования грунтов.

Выходя из трубы-инъектора, раствор быстро затвердевает и цементирует грунт. Для лучшего соединения частиц грунта с раствором, непосредственно перед началом цементации скважину промывают, нагнетая в неё чистую воду.

Что касается цементного раствора, то он формируется в водоцементном отношении от 0,5 до 10. В отдельных случаях в него добавляют песок.

Цементация грунтов на большую глубину осуществляется через скважину диаметром 65 мм. Долговечность цементации напрямую зависит от наличия грунтовых вод и скорости их потока.

Широкое применение цементация грунтов получила при заполнении подземных выработок и карстовых пустот. В отдельных случаях к ней прибегают для организации отдельных фундаментов из трещиноватой скалы или закреплённого песка.

3. Силикатизация грунтов

Данный метод применяется для закрепления как водонасыщенных, так и сухих песков, микропористых просадочных, а также некоторых видов насыпных грунтов. Сущность метода достаточно проста: в лёссы и пески нагнетается жидкое стекло (силикат натрия), который и цементирует поры грунта, повышая тем самым прочность связей между частицами.

Независимо от степени водонасыщения песчаные грунты укрепляют двухрастворным способом. Сперва в ход идёт силикат натрия, а вслед за ним хлористый кальций, значительно ускоряющий процесс образование гелия кремниевой кислоты в воде.

Закрепление грунтов посредством силикатизации может быть применено, если коэффициент фильтрации основания лежит в районе от 3 до 80 м/сутки. Грунты, пропитанные смолами или нефтепродуктами, силикатизации не подлежат.

4. Глинизация и битумизация

Данные методы способны существенно уменьшить водонепроницаемость скальных трещиноватых пород. Смесь подаётся через трубу-инъектор диаметром 20-35 мм. Как и при силикатизации, происходит нагнетание водной суспензии, содержание монтмориллонита в которой составляет порядка 60%. Для лучшего заполнения раствором пор грунта, непосредственно перед началом глинизации в инъектор нагнетается около 20 дм3 воды под давлением в несколько атмосфер.

Битумизация целесообразна в тех случаях, когда цементация невозможна по причине высокой скорости течения грунтовых вод (90 м/сутки и более).

Как видим, современные технические возможности позволяют осуществлять закрепление грунтов самыми различными способами. Правильно выбрав технологию и неукоснительно соблюдая правила её выполнения, можно произвести закрепление грунтового основания любого типа.

www.anker-pk.ru

Методы закрепления грунта

Закрепление грунта- это процесс увеличение физико-механических свойств грунта, без изменения естественной структуры грунтов, в отличие от уплотнения, при котором частицы грунта под действием уплотняющего оборудования сближают, тем самым увеличивая несущую способность основания.

Улучшение характеристик грунта основания достигается при помощи вяжущих материалов, или других методов, когда устанавливаются прочные связи частиц грунта.

Цементация применяется в закреплении грунта, обладающего большой водопроницаемостью. Это галька, трещиноватая скальная порода, гравий, крупный и рыхлый песок. Процесс цементации- это нагнетание цементного раствора специальными инъекторами, который твердея, образует прочное основание, таким же способом происходит восстановление горной породы микроцементом.

Инъектор- это трубка диаметром от девятнадцати до тридцати девяти миллиметров, которая заканчивается конусом и в нее под давлением подается раствор. Инъектор забивается в грунт, или погружается в пробуренные скважины. В данном случае диаметр закрепленного грунта составит около полметра.

Недостаток этого метода в том, что грунт должен быть сильно пористым. Поры должны быть в 5 раз больше частиц цемента.

Силикатизация используется для закрепления песка средней крупности, мелкого и пылеватого. Суть в нагнетании жидкого стекла в грунт. Чаще всего используется двухрастворная силикатизация, когда сначала нагнетается стекло в жидком виде, а после хлористый кальций.

Гель, который образуется при взаимодействии этих растворов связывает грунт. Однорастворная силикатизация- это нагнетание жидкого стекла с фосфорной кислотой, реакция которого идет от 4 до 10 часов, что дает нужное время для производства работ.

Преимущество в простоте, а недостаток в том, что прочность грунта будет меньше. Диаметр закрепленного грунта около полметра.

Битумизация используется для создания водонепроницаемого грунта. Битум подается расплавленным при температуре 400°. Иногда используется холодная битумизация, когда под сильным давлением подается эмульсия, что состоит из расщепленного в воде битума, который эмульгаторы превращают в мелкие частицы.

Смолизация – это применение синтетических смол, которые получаются различными химическими технологиями. Эти смолы превращают грунт в достаточно твердую основу.

Термический способ применяется для закрепления пылевато-глинистого и просадочного грунта. Основой метода является увеличение прочности связей при помощи высокой температуры (спекание), сжиганием в скважинах горючего материала. К примеру: солярное масло, мазут, природный газ.

Скважины должны иметь диаметр до 20 см и глубину от 6 до 15 метров. Недостаток метода в высокой стоимости. Диаметр закрепленного грунта составит около трех метров.

www.stroypraym.ru

Химическое закрепление грунта: предназначение и особенности

Содержание статьи

Закрепляемые грунты должны подходить по некоторым критериям, самым важным из которых является проницаемость. Дело в том, что малопроницаемые грунты (например, глинистые) не поддаются химическому закреплению, потому что нет возможности внедрения в них вяжущих материалов. Способы химического закрепления должны подбираться согласно результатам анализа грунта в определённой местности.

В 1931 году, когда только начали появляться первые способы химического закрепления, все разработки были основаны на применении силиката натрия, который является неорганическим полимером. Данный метод не имел перспектив, поэтому специалисты стали проводить исследования с целью внедрения гелеобразующих растворов в данную сферу. А с развитием технологий появлялись всё новые и новые способы.

Химическое закрепление грунтов

Методы химического закрепления грунтов


В настоящее время существует очень много методов, позволяющих грамотно провести химическое закрепление грунта. Давайте выделим наиболее эффективные из них.

Способ 1. Битумизация


Метод горячей битумизации используют, когда необходимо произвести закрепление полускальных или даже скальных пород, он применяется не так часто, но упомянуть его стоит. Этот способ основан на нагнетании расплавленного битума через специальные скважины, проделанные заранее. Когда он полностью остывает порода приобретает такое важное качество, как водонепроницаемость. К сожалению, остывает битум относительно медленно, так как он обладает очень низким показателем теплопроводности.

Недостатком метода является то, что до застывания процесс может сорваться из-за грунтовых вод, которые способны вытолкнуть битум, не достигший низкой температуры и высокого уровня прочности.

Существует также и метод, основанный на холодной битумизации, он отличается тем, что используется для химического закрепления песчаного грунта. Также холодная битумизация предполагает введение эмульсии вместо расплавленного битума. Этот способ применяется, когда необходимо придать грунту хорошую водонепроницаемость. Эмульсии должны быть однородные! Только так можно достигнуть хорошего результата.

Способ 2. Цементация

Под понятием цементации грунтов нужно понимать заполнение всех пустот и прочих пор, образующихся в крупнообломочных грунтах. Со временем должен образоваться цементный камень. Очень внимательно отнеситесь к выбору раствора, для этого подойдут следующие смеси:

  1. Цементные.
  2. Цементно-глинистые.
  3. Цементно-песчаные.

Важно! Выбирайте раствор не только по составу, но и по водоцементному содержанию, которое имеет маркировку «В/Ц». Данный показатель может варьироваться от 0,4 до 1.

Обращайте внимание и на эти показатели при покупке, ни один из них не должен отклоняться от нормы:

  • Водоотделение за 2 часа – до 2%.
  • Подвижность по конусу (АзНИИ) – от 10 до 14 см.
  • Прочность после затвердевания (через 4 недели) при сжатии – 1-2 Мпа.

К сожалению, фильтрация полностью не прекращается, потому что частицы цемента, которые используются для химического закрепления относительно велики (50 мкм) для борьбы с микротрещинами!

Способ 3. Смолизация

Для закрепления грунтов можно использовать и смолы, температура которых во время полимеризации не должна превышать 10 градусов. Вот самые распространённые смолы, которые применяются для этого:

  1. Фенольные. Они образуются из-за поликонденсации фенолов.
  2. Мочевино-формальдегидные. Их также называют карбамидными, а образуются они вследствие поликонденсации формальдегида и мочевины.
  3. Фурановые. Такие смолы образуются во время конденсации фурилового спирта.
  4. Акриловые, являющиеся производными акриловой кислоты.

Специалисты рекомендуют использовать для химического закрепления грунтов именно мочевино-формальдегидные смолы, потому что они легко растворяются в обыкновенной воде, содержат уникальные отвердители, имеют небольшую вязкость, твердеют даже при низких температурах. Цена на такие смолы вполне приемлемая, что и делает их популярными.
Суть данного способа заключается в нагнетании специальных смол в грунт, они должны быть смешаны со специальным отвердителем (чаще всего применяется соляная кислота). Таким образом, достигается водонепроницаемость и прочность.

Инъектор, погружённый в грунт


Способ 4. Силикатизация

Метод, носящий название силикатизации, принято разделять на два варианта применения:

  1. Двухрастворный. Такой способ силикатизации был придуман ещё в 1931 году, когда только появилось такое понятие, как химическое закрепление грунтов. Он заключается в введении специальной трубы в песчаный грунт. Через эту трубу происходит нагнетание силиката натрия (химическая формула – Na2OnSiO2) и специального раствора, основанного на хлористом калии (химическая формула – CaCl2). Данные компоненты образуют вещество, необходимое для закрепления грунта – гидрогель кремниевой кислоты. Таким образом, грунт обретает достаточно большую прочность. Единственный недостаток такого способа – это высокая стоимость.
  2. Однорастворный. Такой способ подойдёт для закрепления песков, коэффициент фильтрации которых – 0,0006-0,006 см/сек. В грунт нагнетают фосфорную кислоту, смешанную со стеклом (в жидком состоянии). Прочность такого грунта, к сожалению, будет не такой прочной и водостойкой, как при двухрастворном методе. Но для устройства противофильтрационных завес он подойдёт хорошо.

Силикатизацию использовать не стоит, если грунт, который необходимо закрепить, пропитан различными маслами, смолами или даже нефтяными продуктами. А также важным критерием является скорость движения грунтовых вод, она не должна превышать 0,006 см/сек, иначе данный способ будет неэффективен!

Способ 5. Электрохимическое закрепление

Данный метод принято разделять на три части:

  1. Электроосмос (для уплотнения и обезвоживания грунта).
  2. Обмен натрия и кальция на алюминий и водород (специальные химические процессы для закрепления грунта).
  3. Образование алюмогеля (структурообразование).

Электрохимический способ закрепления грунтов подразумевает комбинированное применение электрического тока и химических веществ. Он подойдёт только для грунтов, обладающих низкой проницаемостью! Все вещества должны вводиться только под действием электрического тока. Таким образом, происходит химическая реакция, делающая грунт более прочным!

Какое оборудование требуется для химического закрепления грунтов?

К проведению работ необходимо основательно подготовиться, вам потребуется следующее оборудование:

  1. Инъекторы.
  2. Установки, которые предназначены для бурения.
  3. Пневматические молотки (предназначение – забивка инъекторов).
  4. Насос для нагнетания химического раствора.
  5. Компрессор (минимальное давление – 5 атмосфер).
  6. Гидравлические домкраты для подъёма инъекторов (минимальная грузоподъёмность – 7-10 тонн).

Особого внимания заслуживают инъекторы, которые предназначаются для доставки химических веществ на определённую глубину, они забиваются в землю при помощи пневматических молотков. Выбирайте инъекторы, опираясь на необходимую глубину погружения, потому что данное оборудование отличается длинной и прочностью. От этого зависит и масса инъекторов, зная которую можно выбрать гидравлический домкрат, предназначенный для подъёма всего оборудования на поверхность после завершения работ. Если инъектор имеет массу 5 тонн, то грузоподъёмность домкрата должна составлять не менее 7-8 тонн!

Обратите внимание! В списке указано только универсальное оборудование, заранее узнавайте о необходимости приобретения дополнительного для какого-либо конкретного способа!

Схемы погружения инъекторов

Подведём итоги

Химическое закрепление грунтов – это сложный процесс, к которому необходимо отнеситесь максимально серьёзно. Выберите способ, который подойдёт для вашей почвы и найдите необходимое оборудование!

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Мне нравится!1Мне не нравится!0

www.allremont59.ru

Закрепление грунтов – это… Что такое Закрепление грунтов?

        искусственное преобразование (физико-химическими методами) свойств Грунтов для целей строительства в условиях их естественного залегания. В результате З. г. увеличивается несущая способность основания сооружения (См. Основания сооружений), повышается его прочность, водонепроницаемость, сопротивление размыву и др. З. г. широко применяется при строительстве промышленных и гражданских зданий на просадочных грунтах, для укрепления откосов выемок дорог и стенок котлованов в водонасыщенных грунтах, в качестве противооползневых мероприятий, при проходке горных выработок, создании противофильтрационных завес (См. Противофильтрационная завеса) в основании гидротехнических сооружений, для защиты бетонных сооружений (фундаментов) от воздействия агрессивных промышленных вод, для увеличения несущей способности свай и опор большого диаметра и т.д. З. г. достигается нагнетанием в грунт вяжущих материалов и химических растворов, а также воздействием на грунт электрическим током, нагреванием и охлаждением.

         Основные способы З. г.: цементация, глинизация, битумизация, силикатизация, смолизация, методы электрохимического или термического воздействия, искусственное замораживание.

         Цементация заключается в нагнетании в закрепляемый грунт (трещиноватый скальный или песчано-гравелистый) через систему пробуренных в нём скважин цементной суспензии (соотношение массы цемента и воды в растворе в пределах от 0,1 до 2). Для повышения подвижности густых цементных и цементно-песчаных растворов применяют добавки сульфитно-спиртовой барды в количестве 0,01—0,25% по отношению к цементу. Ускорение схватывания растворов и увеличение первоначальной прочности цементного камня регулируется добавками хлористого кальция в количестве 1—5% по отношению к цементу. Прочность и водонепроницаемость грунта после цементации значительно увеличиваются.

         В кавернозных скальных породах при большой скорости грунтового потока наряду с цементацией применяется горячая битумизация. Её назначение — заделка наиболее крупных каверн, не поддающихся цементации из-за большой скорости грунтового потока. Нагнетание горячего битума в полости и трещины кавернозных пород производится через пробуренные скважины, оборудованные инъекторами. При холодной битумизации в грунт нагнетают тонкодисперсную битумную эмульсию. Способ применяется для очень тонких трещин в скальных грунтах и закрепления песчаных грунтов.

         Глинизация служит для уменьшения фильтрационной способности трещиноватых скальных, кавернозных пород и гравелистых грунтов. При этом способе в трещины породы нагнетается под большим давлением глинистая суспензия с добавкой небольшой дозы коагулянта.

         Способ силикатизации основан на использовании силикатных растворов. Для закрепления среднезернистых песков применяется т. н. двухрастворный способ, состоящий в последовательном нагнетании в грунт растворов силиката натрия и хлористого кальция. Получающийся в результате реакции гель кремниевой кислоты придаёт грунту значительную прочность и водонепроницаемость. Мелкие пески закрепляются способом однорастворной силикатизации, т. с. раствором силиката натрия с добавкой фосфорной кислоты (рис. 1). В лёссовых грунтах нагнетается лишь раствор силиката натрия; роль второго раствора выполняют соли самого грунта.

         Смолизация — нагнетание водного раствора карбамидной смолы с добавкой соляной кислоты, щавелевой кислоты или хлористого аммония. Применяется для закрепления, повышения прочности и водонепроницаемости мелкозернистых песчаных грунтов.

         Для глинистых грунтов, где нагнетание растворов невозможно, используется электрохимический способ закрепления, основанный на пропускании постоянного электрического тока через грунт, в который вводится раствор хлористого кальция, в результате чего грунт обезвоживается и уплотняется. Реакции обмена, происходящие при этом в приэлектродной зоне, также способствуют уплотнению и закреплению грунта. Электрохимическое закрепление подразделяется на электроосушение, электроуплотнение и электрозакрепление.

         Для упрочнения просадочных лёссовых грунтов применяется термическое закрепление, осуществляемое обжигом закрепляемых грунтов газообразными продуктами горения топлива, имеющими температуру 700—1000°С. Наиболее эффективным является сжигание топлива непосредственно в толще закрепляемого грунта (рис.2). Стабилизация и закрепление неустойчивых водоносных грунтов достигается искусственным замораживанием грунтов (См. Замораживание грунтов).

         В СССР периодически проводятся всесоюзные совещания по закреплению и уплотнению грунтов, материалы которых публикуются в специальных сборниках.

         Лит.: Адамович А. Н. и Колтунов Д. В., Цементация оснований гидросооружений, М. — Л. 1953; Ржаницын Б. А., Силикатизация песчаных грунтов, М., 1949; Литвинов И. М., Термическое укрепление просадочных лёссовых и других грунтов в основании различных зданий и сооружений, К., 1955.

         Б. А. Ржаницын.

        

        Рис. 1. Схема установки для силикатизации грунтов: 1 — цистерна с крепителем; 2 — цистерна с кислотой; 3 — насос «НД»; 4 — смеситель; 5 — пульт управления с регистрирующей аппаратурой; 6 — инъектор; 7 — отбойный молоток для погружения инъектора в грунт; 8 — контур закрепления.

        

        Рис. 2. Схема установки для термического закрепления просадочных лёссовых грунтов сжиганием топлива непосредственно в скважине: 1 — просадочный грунт; 2 — непросадочный грунт; 3 — компрессор; 4 — трубопровод для холодного воздуха; 5 — ёмкость для жидкого горючего; 6 — насос для подачи горючего в скважину; 7 — трубопровод для горючего; 8 — фильтр; 9 — форсунка; 10 — затвор с камерой сгорания; 11 — скважина; 12 — зона термического закрепления грунта.

dic.academic.ru

Закрепление грунтов

ЗАКРЕПЛЕНИЕ ГРУНТОВ (а. stabilization of earth, stabilization of ground rocks; н. Воdenbefestigung; ф. соnsolidation des sols; и. estabilizacion de suelos) — искусственное увеличение несущей способности, прочности, водонепроницаемости, сопротивления размыву и т.п. массива горных пород (в условиях их естественного залегания), непосредственно воспринимающего нагрузки от сооружений. Закрепление грунтов применяется при проходке горных выработок, строительстве промышленных и гражданских зданий на просадочных грунтах, для укрепления откосов выемок дорог и стенок котлованов в водонасыщенных грунтах, в качестве противооползневых мероприятий, при создании противофильтрационных завес в основании гидротехнических сооружений, гидроизоляции фундаментов от воздействия агрессивных промышленных вод, для увеличения несущей способности свай и опор большого диаметра и т.д.

Основные способы закрепления грунтов: цементация, глинизация, битумизация горных пород, искусственное замораживание грунтов; применяются также силикатизация, смолизация, методы электрохимического или термического воздействия. Способ силикатизации основан на использовании силикатных растворов. Закрепление среднезернистых песков осуществляется с помощью, так называемого, двухрастворного способа, состоящего в последовательном нагнетании в грунт растворов силиката натрия и хлористого кальция. Получающийся в результате реакции гель кремниевой кислоты придаёт грунту значительную прочность и водонепроницаемость. Мелкие пески закрепляют раствором силиката натрия с добавкой фосфорной кислоты. В лёссовые грунты нагнетается лишь раствор силиката натрия; роль второго раствора выполняют соли самого грунта.

Смолизация — нагнетание растворов синтетических смол с добавками отвердителей и ускорителей схватывания. Применяется для закрепления, повышения прочности и водонепроницаемости мелкозернистых несвязных грунтов, тонкотрещиноватых и пористых горных пород. Для глинистых грунтов, где нагнетание растворов невозможно, используется электрохимический способ закрепления, основанный на пропускании постоянного электрического тока через грунт, в который вводится раствор хлористого кальция, в результате чего грунт обезвоживается и уплотняется. Реакции обмена, происходящие при этом в приэлектродной зоне, также способствуют уплотнению и закреплению грунта. Электрохимическое закрепление грунтов подразделяется на электроосушение, электроуплотнение и электрозакрепление. Для упрочнения просадочных лёссовых грунтов применяется термическое закрепление грунтов , осуществляемое обжигом закрепляемых грунтов газообразными продуктами горения топлива, имеющими температуру 700-1000° С. Наиболее эффективным является сжигание топлива непосредственно в толще грунта.

www.mining-enc.ru