Свойства дизельного топлива – Вопрос 114.Дизельное топливо. Способы получения, состав, характеристика. Свойства дизельного топлива. Влияющие на рабочие процессы выходные параметры и износ двигателя

4.4. Дизельное топливо и его основные свойства.

Дизельное топливо- это сложная смесь углеводородов различных химических групп с температурой кипения 180 … 360°С., которую получают компаундированием керосино- газойлевых фракций различных технологических процессов переработки нефти и газовых конденсатов, предварительно очищенных от нежелательных примесей (т.е. основой товарного дизельного топлива является газойлевый дистиллят прямой перегонки нефти в смеси с частью керосинового дистиллята).

4.4.1.Склонность дизельного топлива к самовоспламенению.

4.4.1.1. Цетановое число.

Свойство дизельного топлива, характеризующее мягкую или жесткую работу дизеля, оценивают по его самовоспламеняемости. Эту характеристику определяют путем сравнения работы стандартного дизеля на испытуемом и на эталонном топливах.

Оценочным показателем служит цетановое число топлива.

Цетановое число дизельного топлива представляет собой процентное (по

объему) содержание цетана в смеси с альфаметилнафталином, которое по

самовоспламеняемости равноценно испытуемому в стандартном двигателе топливу.

Цетан обладает малым периодом задержки воспламенения. Его цетановое число принято за 100 ед. Альфаметилнафталин представляет собой ароматический углеводород, обладающий большим периодом задержки воспламенения и вызывает очень жесткую работу двигателя. Цетановое число его условно принято за 0 ед.

Графическая интерпретация ЦЧ.

Содержание в смеси цетана,%(V)

Содержание в смеси альфаметилнафталина,%(V)

ЦЧ

0

100

0

20

80

20

40

60

40

60

40

60

80

20

80

100

0

100

45

55

45

ЦЧ

Содержание в смесиV) .

цетана, %(V).

Например, если самовоспламеняемость испытуемого топлива равноценна

самовоспламеняемости смеси, состоящей из 45% цетана и 55% альфаметилнафталина, то цетановое число топлива будет равно 45 ед. Цетановое число определяют по совпадению вспышек на одноцилиндровой установке ИТ9-ЗМ, работающей по принципу самовоспламенения топлива от сжатия (ГОСТ 3123-87). Конструкция установки обеспечивает изменение степени сжатия в пределах от 7 до 23.

Сначала пускают двигатель и устанавливают стандартный режим работы, после чего переводят на испытуемое топливо. Изменяя степень сжатия, добиваются начала самовоспламенения топлива в ВМТ. Затем подбирают такую смесь цетана с альфаметилнафталином, чтобы она при этих же условиях самовоспламенялась строго в ВМТ. Процентное содержание цетана в этой смеси показывает цетановое число испытуемого топлива.

Цетановое число дизельного топлива должно быть не менее 45 ед. Применение топлива с меньшим цетановым числом приводит к увеличению периода задержки самовоспламенения и возникновению жесткой работы двигателя; ЦЧ выше 50 ед. нецелесообразно из-за уменьшения полноты сгорания топлива.

Для повышения цетанового числа дизельного топлива к нему прибавляют

специальные высокоцетановые компоненты, например, соответствующие фракции

жидкого топлива, получаемого в результате синтеза из оксида углерода и водорода. Для этого также вводят в топливо специальные присадки- перекиси углеводородов, нитросоединения: нитроалканы, изопропилнитрат и др. Однако при этом снижается стабильность топлива при хранении.

4.4.1.2.Температура самовоспламенения. Ее связь с цетановым числом.

tсам. называют такую min температуру, при которой смесь паров данного вещества с воздухом дает устойчивую вспышку без внешнего источника воспламенения на специальной лабораторной установке.

t сам=280…330оСдля разных марокдизельных топлив.

Чем ниже t сам, тем легче топливо самовоспламеняется, тем выше его цетановое число и наоборот.

studfiles.net

Свойства дизельного топлива – Миксент

Свойства дизельного топлива

Дизельное топливо это жидкий продукт, получающийся из керосиново-газойлевых фракций прямой перегонки нефти, который обладает целым набором характеристик.

  • Цетановое число, определяющее высокие мощностные и экономические показатели работы двигателя;
  • Фракционный состав, определяющий полноту сгорания, дымность и токсичность отработанных газов двигателя;
  • Вязкость и плотность, обеспечивающие нормальную подачу топлива, распыливания в камере сгорания и работоспособность системы фильтрования;
  • Низкотемпературные свойства, определяющие функционирование системы питания при отрицательных температурах окружающей среды;
  • Степень чистоты, характеризующая надёжность и долговечность работы системы фильтрования топливной аппаратуры и цилиндр-поршневой группы двигателя;
  • Температура вспышки, определяющая условия безопасности применения топлива на дизелях;
  • Наличие сернистых соединений, непредельных углеводородов и металлов, характеризующее нагарообразование, коррозию и износы. 

Цетановое число дизельного топлива

Цетановое число – основной показатель воспламеняемости дизельного топлива. Оно определяет запуск двигателя, жёсткость рабочего процесса (скорость нарастания давления), расход топлива и дымность отработанных газов. Чем выше цетановое число топливо, тем ниже скорость нарастания давления и тем менее жёстко работает двигатель.

Однако с повышением цетанового числа топлива сверх оптимального, обеспечивающего работу двигателя с допустимой жёсткостью, ухудшается его экономичность в среднем на 0,2-0,3% и дымность отработанных газов на единицу цетанового числа повышается на 1-1,5 единицу Хартриджа.

Цетановое число топлив зависит от их углеводородного состава.

Наиболее высокими цетановыми числами обладают нормальные парафиновые углеводороды, причём с повышением их молекулярной массы оно повышается, а по мере разветвления – снижается.

Чем выше температура кипения топлива, тем выше цетановое число, и эта зависимость носит почти линейный характер; лишь для отдельных фракций цетановое число может понижаться, что объясняется их углеводородным составом.

Цетановые числа дизельных топлив различных марок, вырабатываемых отечественной промышленностью, характеризуются следующими значениями: цетановое число, ед.  47-51; 45-49; 40-42; 38-40.

Известны присадки для повышения цетанового числа дизельных топлив -изопропил – или циклогексилнитраты. Они допущены к применению, например, “Миксент 2000”.

Установление оптимальных цетановых чисел имеет большое практическое значение, поскольку с углублением переработки нефти в состав дизельного топлива будут вовлекаться лёгкие газойли каталитического крекинга, коксования и фракции, обладающие относительно низкими цетановым числами.

Бензиновые фракции также имеют низкие цетановые числа, и добавление их в дизельное топливо всегда заметно снижает цетановое число последнего.

Цетановое число определяют по ГОСТ 3122-67, сравнивая воспламеняемость испытуемого топлива с эталонным (смеси цетана с а-метилнафталином в разных соотношениях). За рубежом для характеристики воспламеняемости топлива наряду с цетановым числом используют дизельный индекс. Этот показатель нормируется и в отечественной технической документации на дизельное топливо, поставляемое на экспорт, – ТУ 38001162-85.

Между дизельным индексом и цетановым числом топлива существует такая зависимость:

Дизельный индекс 20  30  40  50  62  70  80
Цетановое число  30  35  40  45   55  60  80

Фракционный состав

Характер процесса горения в двигателе определяется двумя основными показателями – фракционным составом и цетановым числом. На сгорание топлива более лёгкого фракционного состава расходуется меньше воздуха, при этом за счёт уменьшения времени, необходимого для образования топливовоздушной смеси, более полно протекают процессы смесеобразования.

Влияние фракционного состава топлива для различных типов двигателей неодинаково. Двигатели с предкамерным и вихрекамерным смесеобразованием вследствие наличия разогретых до высокой температуры стенок предварительной камеры и более благоприятных условий сгорания менее чувствительны к фракционному составу топлива, чем двигателя с непосредственным впрыском.

Вязкость и плотность

Вязкость и плотность определяют процессы испарения и смесеобразования в дизеле. Более низкая плотность и вязкость обеспечивают лучшее распыливание топлива; с повышением указанных показателей качества увеличивается диаметр капель и уменьшается полное их сгорание, в результате увеличивается удельный расход топлива, растёт дымность отработанных газов.

С увеличением вязкости топлива возрастает сопротивление топливной системы, уменьшается наполнение насоса, что может привести к перебоям в его работе. При уменьшении вязкости дизельного топлива количество его, просачивающееся между плунжером и втулкой, возрастает по сравнению с работой на более вязком топливе, в результате снижается производительность насоса.

От вязкости зависит износ плунжерных пар. Вязкость топлива в пределах 1,8-7,0 мм/с практически не влияет на износ плунжеров топливной аппаратуры современных быстроходных дизелей.

Степень чистоты дизельного топлива

Этот показатель определяет эффективность и надёжность работы двигателя, особенно его топливной аппаратуры.

Чистоту топлива оценивают коэффициентом фильтруемости, который представляет собой отношение времени фильтрования через фильтр из бумаги БФДТ при атмосферном давлении десятой порции фильтруемого топлива к первой.

На фильтруемость топлив влияет наличие воды, механических примесей, смолистых веществ, мыл нафтеновых кислот.

В товарных дизельных топливах содержится в основном растворённая вода от 0,002 до 0,008%, которая не влияет на коэффициент фильтруемости. Не растворённая в топливе вода -0,01% и более – приводит к повышению коэффициента.

Присутствие в топливе поверхностно-активных веществ – мыл нафтеновых кислот, смолистых и серо-органических соединений – усугубляет отрицательное влияние эмульсионной воды на фильтруемость топлива. Содержание механических примесей в товарных дизельных топливах, выпускаемых НПЗ, составляет 0,002-0,004%. Это количество не отражается на коэффициенте фильтруемости при исключении других отрицательных факторов. Коэффициент фильтруемости дизельных топлив, отправляемых с предприятий, находится в пределах 1,5-2,5.

Температура вспышки

Сернистые соединения, непредельные углеводороды и металлы влияют на нагарообразование в дизелях и являются причиной повышенной коррозии и износов. При сгорании топлив, содержащих непредельные углеводороды, вследствие окисления в цилиндре двигателя образуются смолистые вещества, а затем нагар. В результате этого падает мощность и повышается износ деталей двигателя.

Содержание непредельных углеводородов определяют по йодному числу и нормируют стандартом – 6212/100 Г. Соединения серы при сгорании образуют 8С>2 и БОз (последний сильнее влияет на нагарообразование, износ и коррозию в двигателе, на изменение качества масла), что повышает точку росы водяного пара, усиливая этим процесс образования серной кислоты.

Продукты взаимодействия кислоты с маслом – смолистые вещества, нагар, – способствуют износу деталей двигателя. Причиной повышенной коррозии и износа является присутствие в топливе металлов. Считают, что при содержании У>5«10>о и №>20*10^% срок службы лопаток газовых турбин снижается в 2-3 раза.

Низкотемпературные свойства

Сократить потери при производстве зимнего дизельного топлива можно введением в топливо депрессорных присадок (в сотых долях процента от 0,3 до 1,0 кг/т). Депрессорные присадки, достаточно эффективно понижая температуру застывания, практически не влияют на температуру помутнения топлива, что в значительной мере ограничивает температуру его применения (товарный вид).

Нередки случаи, когда для снижения температуры застывания на местах применения используют смеси летних сортов дизельных топлив с реактивным топливом (ТС) и бензином.

Неквалифицированное разбавление летнего, топлива керосином, а в ряде случаев бензином приводит к резкому увеличению износа двигателей и повышению пожаровзрывоопасности транспортных средств. В этих условиях практически единственным технически и экономически правильным решением, позволяющим эффективно и надёжно эксплуатировать автотракторную технику в осенне-зимний период, является увеличение выпуска топлив с депрессорными присадками.

Правильность выбора данного направления подтверждается и мировой практикой (в странах Западной Европы низкозастывающие топлива с депрессорными присадками широко используются на транспорте с середины 60-х годов). Применение депрессорных присадок с целью улучшения низкотемпературных свойств дизельных топлив намного экономичнее получения зимних топлив по классической схеме на основе керосино-газойлевых дистиллятов, так как в последнем случае снижается общий выход дизельных топлив на нефть в среднем с 30% до 16%, а в состав таких топлив приходится вовлекать до 70% дефицитных керосиновых фракций.

В настоящее время испытаны и допущены к применению дизельные топлива с отечественными и зарубежными депрессорными присадками, например: “Миксент 2010”, “Keroflux”, “Dodiflow”. Указанные топлива должны маркироваться как ДЗп (топливо дизельное зимнее с депрессорной присадкой).

Большой опыт, накопленный при проведении испытаний топлив с депрессорными присадками, позволил выявить при их применении ряд особенностей, учёт которых необходим для обеспечения безотказной, высокопроизводительной и долговечной работы автотракторной техники.

Нижний температурный предел применения топлив ДЗп во многом определяется тонкостью фильтрации топливных фильтров тонкой очистки (ФТО) дизельных двигателей различных марок. При этом основным фактором является то обстоятельство, что депрессорные присадки, значительно понижая температуру фильтруемости и застывания топлива, практически не оказывают влияния на температуру его помутнения (т.е. температуру начала образования в топливе кристаллов парафиновых углеводородов).

В результате исследований установлено, что введение в летнее топливо депрессорной присадки обеспечивает более качественный пуск дизелей без средств подогрева при более низкой температуре воздуха. Применение депрессорной присадки позволяет значительно (до 15%) сократить эксплуатационный расход топлива, так как отпадает необходимость прогрева двигателей.

В процессе испытаний топлив с депрессорными присадками доказано, что после 12-15 дней эксплуатации техники на таком топливе заметно (на 10-15%) снижается часовой расход топлива и уменьшается дымность отработавших газов двигателей вследствие раскоксовывания распылителей форсунок и как результат – улучшается тонкость распыла топлива.

Происходит это вследствие того, что, обладая высокими поверхностно-активными свойствами, депрессорная присадка значительно улучшает моющие свойства топлива, а это обеспечивает удаление высокотемпературных отложений с деталей узлов и агрегатов топливной аппаратуры двигателя.

Специальными испытаниями доказана возможность приготовления топлива с депрессорными присадками не только в промышленных условиях, но и непосредственно на местах применения с использованием технических средств (автоцистерн, автотоплиромаслозаправщиков), что значительно расширяет возможность и повышает эффективность применения депрессорных присадок в случае отсутствия на местах эксплуатации техники необходимого количества зимнего дизельного топлива.

miksent.ru

Свойства дизельного топлива — МегаЛекции

Автомобильные топлива

Бензин

Бензин является продуктом перегонки нефти. Существует два основных способа получения топлив из нефти.
Первый и самый простой – прямая перегонка, при которой нефть нагревают в специальных установках – трубчатых печах. Пары нефти, образовавшиеся при её нагревании, направляются в разделитель установки (ректификационную колонну), где охлаждаются и конденсируются. В верхней части колонны конденсируются и собираются лёгкие фракции нефти (фракции бензина), выкипающие при температуре до 205° Цельсия, ниже – керосин, ещё ниже – фракции дизельного топлива, газойлевых и соляровых масел. Остаток, получаемый от прямой перегонки нефти, называется мазутом. Из секций колонны фракции отводятся в топливосборники.
Второй способ получения бензина – химический. В настоящее время широко применяется термический, каталитический и гидрокрекинг. Сырьём для получения бензина химическим способом может являться не только нефть, но и её тяжёлые фракции, такие как мазут или соляровые фракции. После очистки бензина от вредных примесей он готов к использованию в качестве топлива для двигателей.

Свойства бензинов.

Основным свойством бензинов является 1) испаряемость и 2) детонационная стойкость.
Испаряемость бензина определяет его способность переходить из жидкого состояния в парообразное. Испаряемость топлива влияет на процесс образования и горения топливовоздушной смеси. Так как в данных процессах участвуют только газообразные фракции топлива, не испарившийся бензин отрицательно сказывается на работе двигателя, а именно: 1) стекая по цилиндрам, смывает с их стенок масло, что способствует повышенному износу деталей двигателя; 2) препятствует нормальному процессу сгорания топливовоздушной смеси. Из-за медленного горения смеси давление в цилиндре падает, двигатель не развивает номинальной мощности, в отработавших газах увеличивается содержание вредных веществ (в первую очередь – оксида углерода). Не полностью сгоревшее топливо в виде нагара откладывается на деталях (поршнях, клапанах) и содействует появлению ряда неисправностей двигателя.
Испаряемость бензина определяют в лабораторных условиях по его количеству, выкипающему при нагреве до определённых температур. 10% бензина должно выкипать при нагреве до 80°С, что необходимо для надёжного запуска холодного двигателя; 50% бензина должно выкипать при нагреве до 145°С, что необходимо для быстрого прогрева двигателя и его устойчивой работы на этом режиме. Полностью бензин должен испаряться при нагреве до 205°С.
Бензины, имеющие большее количество тяжёлых (смоляных) фракций не выкипающих при температуре до 205°С, при непродолжительном хранении приобретают тёмно-коричневую окраску. В процессе эксплуатации двигателя на таком топливе, содержащиеся в нём смолы осаживаются на поршневых кольцах, поршнях, клапанах, стенках бензопроводов и топливных баков, в каналах и жиклёрах карбюратора, топливных форсунках.
Бензины, имеющие избыток лёгких фракций, имеют тенденцию к закипанию при низких температурах. Во избежание образования паровых пробок в топливной системе, температура кипения бензина не должна быть ниже 30°С.
По фракционному составу бензины выпускаются двух видов (сортов) – зимний и летний. «Зимние» бензины обладают лучшей испаряемостью.
Детонационная стойкостьбензина оценивается по его октановому числу. Чтобы определить степень склонности топлива к детонации, его сравнивают с эталонными топливами, октановое число которых известно заранее. Такие топлива состоят из смеси изооктана и нормального гептана. По своим детонационным свойствам эти вещества прямо противоположны. Изооктан не детонирует и его октановое число условно равняется 100 единицам. Гептан является сильным детонатором и его октановое число принято равным «нулю». Если, при испытании бензина на специальной установке, имеющей одноцилиндровый двигатель, степень сжатия которого может меняться в необходимых пределах, оказалось, что бензин обладает такими же детонационными свойствами, как смесь, состоящая из 91% изооктана и 9% гептана, то октановое число бензина принимается равным 91. Октановое число топлив, имеющих детонационную стойкость лучшую, чем у изооктана, оценивают по условной шкале октановых чисел. При этом за эталон принимается чистый изооктан, содержащий 1,59 мг/л тетраэтилсвинца. Октановое число данной смеси условно равно 120. Чем больше октановое число бензина, тем выше его детонационная стойкость.
В настоящее время при эксплуатации автомобильных двигателей применяют бензины марок А-76, АИ-93, АИ-95, АИ-98 и некоторые другие. Буква «А» обозначает, что бензин автомобильный, буква «И», что октановое число определялось исследовательским методом (ещё один из способов определения октанового числа, кроме описанного – «моторного»), цифра указывает на величину октанового числа. Конструкция двигателя рассчитана на применение бензина с определённым октановым числом. Чем выше степень сжатия двигателя, тем с большим октановым числом топливо он потребляет. Применение бензина с октановым числом ниже предусмотренного для данной конструкции двигателя приводит к работе двигателя с детонацией и, в дальнейшем, к выходу его из строя.
Детонация – ненормально быстрое сгорание топливовоздушной смеси в цилиндре двигателя, при котором скорость распространения фронта пламени возрастает с 20 – 40 м/сек. до 2000 м/сек. и более. Детонационное горение приводит к чрезмерному и скачкообразному росту давления в цилиндре. Детали двигателя при этом испытывают ударные нагрузки и преждевременно изнашиваются. Даже после непродолжительной работы возможны поломки перемычек поршня между кольцами, поломки самих колец и других деталей. Характерным признаком детонации являются звуки, прослушиваемые в верхней части блока цилиндров в «зоне» ВМТ, получившие название «детонационных стуков». Причина их появления – вибрация стенок цилиндров под воздействием ударной волны и стуки деталей в зазорах. Одновременно с этим может наблюдаться существенное падение мощности двигателя, перегрев двигателя и искристый выпуск из глушителя. Причин появления детонации несколько:
1). Применение топлива с низким октановым числом;
2). Чрезмерно раннее зажигание;
3). Обеднённая топливовоздушная смесь;
4). Перегрузка двигателя по оборотам или крутящему моменту;
5). Повышенное отложение нагара на поршнях;
6). Совокупность любых из перечисленных причин.
Также, двигатель может иметь склонность к детонации в силу своих конструктивных особенностей.
Для повышения детонационной стойкости бензинов в них добавляют высокооктановые железосодержащие или кислородосодержащие соединения (спирты и эфиры). До недавнего времени в качестве антидетонационной присадки широко применялась этиловая жидкость, состоящая из смеси тетраэтилсвинца с бромистыми и хлористыми соединениями. В настоящее время применение этилированных бензинов запрещено из-за их токсичности.



Газообразное топливо

В качестве топлива для двигателей внутреннего сгорания наибольшее применение получили природные газы и газы, сопутствующие добыче и переработке нефти. Основным компонентом природных газов является метан. Нефтяные попутные газы состоят главным образом из пропана и бутана. Газообразное топливо используется как в двигателях с принудительным зажиганием, так и в дизельных двигателях при газожидкостном цикле или при непосредственном впрыскивании сжиженного газа в цилиндр и воспламенением от сжатия.
Газ обладает рядом преимуществ перед жидкими видами топлив.
1) Так как в процессе образования топливовоздушной смеси оба компонента находятся в одинаковом агрегатном состоянии, смесь получается более однородной. Хорошо приготовленная смесь сгорает быстро и полностью, мощность двигателя и крутящий момент увеличивается, содержание вредных веществ в отработавших газах уменьшается в 3 – 5 раз, сводится к минимуму процесс отложения нагара на деталях ЦПГ и клапанах.
2) Газообразные топлива обладают высокой детонационной стойкостью.
Октановое число метана и пропанобутановых смесей лежит в пределах от 80 до 110 единиц. Для оценки стойкости газообразных топлив к детонации используется «метановая шкала», в которой за 100 единиц принята детонационная стойкость метана, а за «ноль» – детонационная стойкость водорода.
3) Моторное масло в двигателе, работающем на газе, не подвергается разжижению жидким топливом, что способствует увеличению его срока службы в 2 – 3 раза. Ресурс двигателя при этом увеличивается в 1,5 – 2 раза.
На автотранспортных средствах запас газообразного топлива хранят в сжатом или сжиженном состоянии.

Дизельные топлива

Дизельные топлива являются продуктом переработки нефти. При нагревании нефти фракции дизельного топлива выкипают до температуры 390°С.

Свойства дизельного топлива

Главными свойствами дизельных топлив являются 1) вязкость, 2) фракционный состав, 3) склонность к воспламенению и 4) температура кристаллизации.
Вязкость и фракционный состав оказывают влияние на процесс смесеобразования.
Склонность к воспламенению характеризует качество топлива и влияет на процесс горения смеси.
Температура кристаллизации определяет возможность применения топлива в различных климатических условиях.
Вязкость.Увеличение вязкости топлива приводит 1) к повышению расхода топлива; 2) увеличению продолжительности впрыска топлива; 3) ухудшению качества распыливания топлива.
Дизельное топливо обладает смазывающим свойством. Это свойство используется для смазывания деталей топливных систем, например, форсунок, плунжерных пар насоса высокого давления и т.п. Уменьшение вязкости топлива приводит к ухудшению его смазывающих характеристик.
Вязкость дизельного топлива меняется с изменением температуры окружающей среды. С повышением температуры вязкость уменьшается, а с понижением, наоборот, увеличивается. Вязкость также может изменяться и под влиянием других факторов.
Фракционный состав дизельных топлив оценивают также как и бензинов, т. е. по температуре испаряемости 10, 50 и 90%.
Чрезмерное содержание лёгких фракций топлива приводит к их интенсивному испарению и увеличению скорости нарастания давления газов в цилиндре. Работа двигателя при этом сопровождается повышенным механическим шумом, вибрациями и интенсивным износом деталей.
При повышенном содержании тяжёлых углеводородов скорость испарения топлива уменьшается, ухудшается качество смеси, характеристики двигателя снижаются, увеличивается нагароотложение на деталях, дымность и токсичность отработавших газов.
Склонность к воспламенениюопределяет длительность временного периода от начала впрыскивания топлива в камеру сгорания до момента начала его горения. Данный промежуток времени получил название – «период задержки воспламенения».
Склонность топлива к воспламенению характеризуется цетановым числом и определяется на специальной установке. Исследуемое топливо сравнивается с топливом, цетановое число которого известно. Такие топлива состоят из смеси цетана, воспламеняемость которого принята за 100 единиц, и альфа-метилнафталина, воспламеняемость которого принята за «ноль». Если, например, исследуемое топливо имеет такую же воспламеняемость как смесь, содержащая 45% цетана и 55% альфа-метилнафталина, то его цетановое число равняется «45». Чем выше цетановое число топлива, тем выше его склонность к воспламенению. Цетановые числа, используемых в настоящее время топлив составляют 40 – 50 единиц. Топлива с большим цетановым числом сгорают «мягче», без резкого повышения давления в цилиндре. Топлива с излишне высокой склонностью к воспламенению воспламеняются до распределения в воздушном заряде, что приводит к неполному сгоранию смеси. При использовании топлив с низким цетановым числом увеличивается период задержки воспламенения, в который возрастает количество подготовленной к воспламенению смеси. При воспламенении этой смеси давление в цилиндре резко возрастает, что приводит к жёсткой работе двигателя.
Температура кристаллизации. При низких температурах, растворённые в топливе парафиновые углеводороды кристаллизуются и препятствуют подачи топлива через фильтры к форсункам.
Топливо для дизелей, эксплуатирующихся при температуре от 0°С и выше, обозначают буквой «Л» (летнее), от минус 20°С и выше – буквой «З» (зимнее), от минус 50°С и выше – буквой «А» (арктическое). В маркировке топлива указывают также допустимую массовую долю серы в %. Например, «З – 0,2 – 35» – топливо зимнее, с массовой долей серы – 0,2% и температурой застывания минус 35°С.

Цетановое число топлива связано с его температурными характеристиками. Чем оно меньше, тем ниже температура кристаллизации. Следовательно, зимние топлива с низкой температурой замерзания имеют малое октановое число, что предопределяет более жёсткую работу двигателя.


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

megalektsii.ru

Свойства дизельного топлива: плотность, теплопроводность, вязкость

Представлена таблица свойств дизельного топлива в зависимости от температуры. Даны следующие свойства: плотность дизтоплива ρ в кг/м3, теплопроводность λ в Вт/(м·град),  кинематическая вязкость дизельного топлива ν в сантистоксах (сст). Свойства дизтоплива указаны в интервале температуры от 20 до 100°С.

Дизельное топливо имеет плотность ниже плотности воды и при нагревании, расширяясь, становится менее плотным. По данным таблицы видно, что плотность дизельного топлива при увеличении его температуры снижается. Плотность дизтоплива при комнатной температуре равна 878 кг/м3 или 878,7 г/литр. При нагревании дизельное топливо увеличивается в объеме и его плотность при температуре, например 100°С, становится меньше на 6%.

Величина теплопроводности дизельного топлива уменьшается при его нагреве. Теплопроводность дизельного топлива при температуре 20°С равна 0,1169 Вт/(м·град), но при росте его температуры на 80°С , значение теплопроводности снижается до 0,1076 Вт/(м·град). Таким образом, изменение теплопроводности дизельного топлива в зависимости от температуры невелико.

Кинематическая вязкость дизельного топлива при температуре 20°С равна 8,94 сст. Дизтопливо при нормальных условиях имеет относительно большую вязкость (по сравнению с другими видами топлива), которая значительно снижается при его нагревании. Например, увеличение температуры с 20 до 100 °С приводит к значительному снижению кинематической вязкости дизельного топлива — с 8,9 до 1,6 сст.

Источник:
Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей.

thermalinfo.ru

Характеристика качеств дизельного топлива

 

Дизельное топливо после бензина относится к самым массовым продуктам, применяемым на автомобильном транспорте.

К дизельным топливам предъявляют требования, аналогичные требованиям к бензинам, однако из них можно выделить специфические, обусловленные особенностями смесеобразования и воспламенения в дизелях: сохранение текучести и определенной вязкости при возможно более низких температурах с целью обеспечения надежной подачи в цилиндры двигателя, хорошие смесеобразование и воспламеняемость при впрыскивании в камеру сгорания. Данные требования заложены в физико-химические свойства дизельных топлив, которые определяют их эксплуатационные качества.

Наибольшее влияние на физико-химические свойства дизельных топлив оказывает вязкость, которая характеризует подвижность топлива, величину внутреннего трения, взаимную силу сцепления молекул.

Для дизельного топлива указывается кинематическая вязкость. От вязкости топлива зависит качество его распыливания в цилиндре, дальнобойность струи, четкость начала и конца подачи топлива форсункой.

Кинематическая вязкость в условиях летней эксплуатации топлива находится в пределах (3…6) · 10–6 м2/с, зимней – (1,8…6) · 10–6 м2/с, арктической – (1,5…4) · 10–6 м2.

Плотность дизельных топлив тоже заметно влияет на смесеобразование. Для товарных дизельных топлив плотность составляет 830…875 кг/м3.

Испаряемость влияет на смесеобразование, а показателем, ее характеризующим, является фракционный состав. Облегченный фракционный состав характеризует лучшую испаряемость топлива, которая способствует образованию однородной горючей смеси. Однако при слишком высокой испаряемости на первой стадии горения в течение периода задержки воспламенения в цилиндре скапливается большое количество паров, при воспламенении которых давление резко нарастает и двигатель работает жестко, с повышенными ударными нагрузками. Кроме того, облегчение фракционного состава дизельного топлива ухудшает его воспламеняемость и ведет к трудности пуска двигателя.

Применение дизельных топлив с утяжеленным фракционным составом ведет к ухудшению распыливания, испарения и сгорания топлива. Такое топливо затрудняет пуск холодного двигателя, особенно при низких температурах. Поэтому к основным требованиям по качеству дизельных топлив относится прокачиваемость его по топливной системе, обеспечивающая подачу топлива в цилиндры двигателя в необходимом для заданного режима количестве. Она в свою очередь, помимо вязкости, оценивается еще рядом показателей: температурами помутнения и застывания, содержанием механических примесей и воды, коэффициентом фильтруемости, предельной температурой фильтруемости.

Таким образом, как и в карбюраторных двигателях, для дизелей требуется топливо определенного фракционного состава. Начало кипения этого топлива находится в пределах 180…200 °С. Стандартом на дизельные топлива контролируется только две температуры выкипания 50 и 96 % топлива. Это объясняется тем, что между температурой выкипания 10 % дизельного топлива и работой дизелей однозначной связи не установлено. При повышении температуры выкипания 10 % топлива, т. е. утяжелении топлива, увеличивается его расход и дымность отработавших газов. При облегчении топлива ухудшается пуск дизелей, так как легкие фракции имеют худшую по сравнению с тяжелыми фракциями самовоспламеняемость. Поэтому пусковые свойства дизельных топлив для автомобилей в некоторой степени определяет температура выкипания 50 % топлива. Температура выкипания 96 % топлива регламентирует содержание в топливе наиболее тяжелых фракций, увеличение которых ухудшает смесеобразование, снижает экономичность, повышает нагарообразование и дымность отработавших газов. Установлено, что оптимальными являются следующие предельные значения t96 для летнего периода эксплуатации 360 °С, зимнего – 340 °С, для арктических условий – 330 °С. Эти контрольные значения t96 определены ГОСТом на дизельное топливо.

Наиболее важным эксплуатационным свойством является воспламеняемость дизельных топлив, которая в значительной степени определяет легкость пуска (воспламенение паров в камере сгорания без источника зажигания) и характер работы дизельного двигателя. О воспламеняемости дизельных топлив судят по длительности первой стадии горения – периоде задержки самовоспламенения (ПЗВ), представляющей собой время от начала впрыска топлива до появления первых очагов пламени, т. е. включает время, затрачиваемое на распад топливной струи на капли, частичное их испарение и смешение паров топлива с воздухом (физическая составляющая), а также время, необходимое для завершения предпламенных реакций, и формирование очагов самовоспламенения (химическая составляющая). Физическая составляющая времени задержки воспламенения зависит от конструктивных особенностей двигателя, а химическая – от свойств применяемого топлива.

Склонность дизельного топлива к самовоспламенению оценивается по цетановому числу (ЦЧ), которое определяется на стандартной установке с одноцилиндровым дизельным двигателем.

Количественное определение цетанового числа основано на методе совпадения вспышек в цилиндре испытуемого топлива с эталонными топливами, воспламеняемость которых известна. Для регистрации вспышек используется специальный индикатор воспламенения, устанавливаемый в головке двигателя. В момент воспламенения под действием высокого давления в индикаторе замыкается электрический контакт и зажигается неоновая лампа, посредством которой и осуществляется регистрация вспышки. В качестве эталонных топлив используется цетан (С16Н34) и α-метилнафталин (С11Н10). Воспламеняемость цетана принята за 100 единиц, а α-метилнафталина – за нуль. Цетановым числом испытуемого топлива называется процентное (по объему) содержание цетана в эталонной смеси с α-метилнафталином, при которой обеспечивается при равной степени сжатия одинаковое значение ПЗВ. Цетановое число дизельных топлив составляет 45…58 единиц, однако оптимальное значение цетанового числа соответствует диапазону 40…50 ед.

В ряду важнейших показателей дизельных топлив является способность сохранять чистоту топливной аппаратуры и деталей двигателя, что вызвано образованием отложений нагара на форсунках с последующим изменением факела распыла, ухудшением смесеобразования, снижением экономичности двигателя и повышением дымности его выхлопа.

На способность дизельных топлив образовывать отложения влияют количественное содержание смолистых веществ и сернистых соединений, наличие непредельных и ароматических углеводородов, а также плотность и испаряемость.

В эксплуатационных условиях наибольший вред приносит присутствие в дизельном топливе смол. Основную часть смол составляют примеси, остающиеся после очистки нефтяных дистиллятов. Их количество контролируется так же, как и в бензинах – по содержанию фактических смол. В товарных дизельных топливах содержание фактических смол ограничено величиной 30…40 мг на 100 см3 топлива.

С повышением содержания в дизельных топливах непредельных углеводородов их стабильность при хранении снижается, а склонность к нагарообразованию возрастает. Поэтому количество непредельных углеводородов в дизельном топливе контролируется с помощью так называемого йодного числа. Йодное число представляет собой количество йода, реагирующее в определенных условиях с испытуемым топливом. Йодное число пропорционально содержанию непредельных углеводородов, в связи с чем в товарных дизельных топливах его величина не должна превышать 6 г йода на 100 г топлива.

При увеличении содержания в топливе ароматических углеводородов во всех случаях повышается образование нагара. Этому же способствует наличие серы и сернистых соединений.

В настоящее время основную часть дизельных топлив производят из сернистых нефтей. Поэтому основным методом контроля наличия активной серы являются коррозионные испытания на медную пластинку. Кроме того, дополнительно контролируется содержание меркаптановой серы, а также сероводорода. По этой причине, а также из-за ряда других отрицательных последствий содержание серы в дизельных топливах должно быть не более 0,2…0,5 % (в зависимости от вида топлива), меркаптановой серы – не более 0,01 %, а сероводород должен отсутствовать.

При сгорании дизельного топлива содержащиеся в нем сернистые соединения образуют окислы серы SO2 и SО3. При высокой температуре окислы серы корродируют металлы в газовой фазе. При низкой температуре они растворяются в конденсирующейся из продуктов сгорания воде, образуя коррозионно-агрессивные сернистую и серную кислоты.

Из-за комплексного характера склонности дизельных топлив к нагарообразованию для его более полной оценки используются показатели коксуемости и зольности. Коксуемостью называется свойство топлива образовывать отложения при нагреве до 800 – 900 °С без доступа воздуха. Продукты коксования (кокс) состоят в основном из углерода и высокомолекулярных соединений. Они отлагаются в виде твердого нароста главным образом на горячих деталях, не контактирующих непосредственно с зоной горения (внутри форсунок, на юбках поршней в области поршневых колец и др.). Контроль коксуемости осуществляется по содержанию кокса в 10 %-ном остатке топлива после перегонки, количество которого не должно превышать 0,3 % по всем маркам топлив.

После полного сгорания топлива в воздухе образуется минеральный остаток – зола, вызванный присутствием в топливе различных неорганических примесей. Из-за абразивных свойств золы она не только увеличивает нагар, но и ведет к повышенным износам в двигателе. Поэтому допустимое содержание золы в товарных дизельных топливах – зольность – ограничивается 0,01 %.

Как и в случае бензинов, причиной коррозионной агрессивности дизельных топлив является наличие таких соединений, как водорастворимые кислоты и щелочи, органические кислоты и сернистые соединения.

Присутствие водорастворимых кислот и щелочей в дизельных топливах не допускается. Содержание остальных агрессивных соединений в дизельных топливах контролируется, как и в бензинах, по показателю кислотности. Кислотность не должна превышать 5 мг КОН для нейтрализации 100 мг топлива.

Наличие прецизионных деталей в топливной аппаратуре и высокая тонкость фильтрации в дизельных двигателях предъявляют повышенные требования к чистоте дизельных топлив: в них не должно содержаться воды и механических примесей. Однако практика эксплуатации автомобилей свидетельствует о частых отклонениях от этих требований.

Прежде всего, при транспортировке, хранении и заправке возможно попадание в топливо атмосферной пыли, влаги, продуктов коррозии и осмоления топлива, а также других загрязнителей. В результате, как свидетельствуют обследования, содержание механических примесей и воды в баках автомобилей может достигать соответственно 0,06 и 0,12 % по массе.

Вода в дизельном топливе может послужить причиной нарушения его подачи в цилиндры двигателя при низкой температуре. При плюсовых температурах вода с топливом образует эмульсию, а при отрицательной она превращается в кристаллы льда, которые закупоривают топливные фильтры. ГОСТ на дизтопливо не разрешает присутствия в нем воды.

Содержание механических примесей зависит от степени запыленности воздуха: при сильной запыленности оно увеличивается в процессе эксплуатации в 2…3 раза.

При недостаточной водной промывке после щелочной очистки топлива в нем могут находиться натриевые мыла нафтеновых кислот – нафтенаты. Нафтенаты не растворяются в дизельных топливах и представляют собой студнеобразную массу, способную забивать бумажные фильтрующие элементы.

Присутствие в топливе всех видов загрязнителей контролируется таким показателем качества, как коэффициент фильтруемости. Он определяется на специальном приборе по степени забивки бумажного фильтра при протекании (фильтровании) испытуемого топлива. Коэффициент фильтруемости равен отношению времени (длительности) фильтрования последних 2 мл (десятой порции) испытуемого топлива ко времени фильтрования его первых 2 мл. Для товарных топлив величина коэффициента фильтруемости не должна превышать 3.

Соблюдение норм на коэффициент фильтруемости дизельного топлива обеспечивает минимальное содержание в нем всех видов загрязнителей и необходимую работоспособность топливной системы дизеля. В случае необходимости очистка топлива от загрязнения может быть осуществлена с помощью отстаивания и фильтрации.

Особенностью дизельных топлив является наличие довольно большого количества углеводородов, прежде всего парафиновых, с высокой температурой застывания. При понижении температуры эти углеводороды начинают выпадать из топлива в виде кристаллов, топливо мутнеет. Поэтому температуру, при которой топливо теряет прозрачность, вследствие начала процесса кристаллизации называют температурой помутнения. Хотя топливо при этом еще хорошо прокачивается, образующиеся микрокристаллы при низкой температуре подкапотного пространства (например, в период пуска) могут забить фильтр тонкой очистки и привести к прекращению подачи топлива. Поэтому принято, чтобы температура помутнения топлива была на 5…10 °С ниже температуры воздуха, при которой эксплуатируется автомобиль.

При дальнейшем охлаждении топлива количество микрокристаллов растет, они начинают сращиваться и образуют пространственную жесткую решетку, в результате чего топливо теряет текучесть. Температурой застывания называется такая температура, при которой находящееся в пробирке дизельное топливо при охлаждении в определенных условиях не изменяет положения мениска при наклоне пробирки на 45° в течение минуты. Образовавшуюся кристаллическую структуру можно разрушить с помощью перемешивания, однако при его прекращении топливо быстро вновь застывает. Для обеспечения нормальной работы дизеля температура застывания должна быть на 10…15 °С ниже температуры окружающей среды. Этот показатель служит приблизительным ориентиром при определении возможных предельных условий применения топлив, и в большей мере по этому показателю судят о возможностях заправки, транспортирования, слива и налива топлива.

Еще одним показателем, характеризующим дизельное топливо, является температура вспышки, которая ограничивает содержание в топливе наиболее легких фракций и характеризует его огнеопасность. Температура вспыш-ки – это та наименьшая температура, до которой нужно нагреть дизельное топливо в закрытом тигле, чтобы его пары образовали с воздухом смесь, вспыхивающую при поднесении к ней пламени. Температура вспышки должна быть не ниже 35 °С для всех марок дизельного топлива.

 

 


Похожие статьи:

poznayka.org

Основные характеристики дизтоплива (солярки)

В производстве дизельного топлива используются десятки параметров и характеристик этого продукта нефтепереработки. Мы остановимся на ключевых показателях, тех, что влияют на главные потребительские свойства солярки. ГОСТы и регламенты выделяют следующие основные характеристики дизтоплива или, говоря научным языком, основные эксплуатационные показатели дизельных топлив.

Цетановое число — определяет мощностные и экономические показатели двигателя; обычный диапазон значений цетанового числа колеблется от 40 до 55. Фактически, эта цифра означает отрезок времени от подачи топлива в цилиндр до его воспламенения. Более высокое цетановое число означает меньшее время воспламенения, и, соответственно, лучшее горение топлива. Более высокое цетановое число повышает экологичность выхлопа. Однако если этот показатель превышает 60, то не происходит прирост мощности двигателя.

Цетановый индекс – цетановое число (расчетное), до добавления повышающей присадки в дизельное топливо. Цетаноповышающие присадки по-разному влияют на физический и химический состав топлива, поэтому следует избегать их передозировки. Во избежание изменения состава, необходимо чтобы разница между цетановым числом и цетановым индексом была минимальной.

Фракционный состав – влияет на полноту сгорания топлива, дымность и токсичность выхлопных газов. При увеличении содержания легких фракций в дизельном топливе повышается критическое давление воспламенения рабочей смеси, появляются стуки в цилиндрах, и разжижается картерное масло. Слишком тяжелые фракции сгорают неполно и увеличивают отложение нагара в камере сгорания.

Вязкость – определяет процесс нагнетания и впрыска топлива. Она влияет также на смазывающие характеристики. Низкая вязкость топлива приводит к быстрому износу топливного насоса и форсунок. Напротив, высокая вязкость топлива усложняет холодный запуск, а также неблагоприятно сказывается на топливоподводящей системе, приводя к трещинам головок форсунок и подтеканию топлива, также может быть затруднен процесс регулировки подачи топлива.

Плотность – определяет энергоемкость топлива. Чем выше плотность топлива, тем больше энергии вырабатывается в процессе его сгорания и, соответственно, возрастают показатели эффективности и экономичности. Зависит от температуры окружающего воздуха – при понижении температуры плотность увеличивается, объем топлива уменьшается – происходит усадка, и наоборот. Для определения изменения объема можно пользоваться простой формулой: «Один литр на одну тонну на один градус».

Низкотемпературные свойства – характеризуют подвижность топлива при отрицательной температуре. Низкотемпературные свойства оцениваются по значениям температуры помутнения и застывания:

  • Температура помутнения – это температура, при которой меняется фазовый состав топлива, так как наряду с жидкой фазой появляется твердая. При этой температуре топливо начинает мутнеть. При помутнении дизельное топливо не теряет текучести.
  • Температура застывания – это температура, при которой топливо полностью теряет текучесть и приобретает студнеобразный вид. Температура застывания ниже температуры помутнения на 5-10 °С.

Коксуемость топлива – характеризуется чистотой двигателя и топливоподающей аппаратуры. При сгорании топлива в двигателе образуются нагар на стенках камеры сгорания и впускных клапанах, а также отложения на распылителях и иглах распылителей форсунок. Нагарообразование в двигателе зависит от следующих показателей применяемого дизельного топлива: коксуемости, содержания фактических смол и серы, фракционного состава, количества непредельных и ароматических углеводородов и зольности. Чем выше коксуемость топлива, тем больше образуется нагара во время работы дизеля.
Температура вспышки в закрытом тигле – самое низкое значение температуры топлива, при которой над поверхностью образуется воспламеняющаяся смесь паров, газов и воздуха. Температура вспышки определяет условия безопасного применения топлива в двигателях, чем она выше, тем меньше вероятность случайного возгорания топлива.

Массовая доля серы – определяет образование нагара, коррозию и износ дизельного двигателя. Содержание серы – главный экологический показатель дизтоплива. Продукты сгорания серы при взаимодействии с водой образуют кислоты. Сера причиняет ущерб не только природе, но и двигателю – продукты ее сгорания провоцируют коррозию металла, а при контакте их с моторным маслом образуются твердые отложения – двигатель закоксовывается. Благодаря требованиям регулирующих органов, прописанным в современных стандартах, за последние 20 лет производители снизили содержание серы в дизтопливе более, чем в 50 раз.

Смазывающая способность дизельного топлива – характеристика, которая определяет срок службы элементов топливной системы. Использование топлива с недостаточными смазывающими свойствами может привести к быстрому износу или заклиниванию движущихся частей элементов топливной системы.

Содержание воды и твердых взвешенных частиц. При хранении топлива в неполной емкости вода может попасть в топливо из-за конденсации, а при перевозке топлива в цистерне в него могут попадать механические примеси, поэтому рекомендуется обязательно фильтровать топливо перед заливкой его в топливный бак. Повышенное содержание в топливе водных фракций и твердых взвешенных частиц существенно снижает срок службы фильтров, а также всей системы подачи топлива в целом.

Несмотря на обилие параметров при классификации дизтоплива используется только два из них: массовая доля серы и температура помутнения. Но в паспортах качества дизтоплива обычно указываются 15-20 ключевых показателей солярки.

Источник

www.otkspb.ru

Основные эксплуатационные свойства дизельного топлива: – Свойства дизтоплива – Свойства нефтепродуктов – Полезная информация

Цетановое число

 

Цетановое число численно равно объёмной доле цетана (С16Н34, гексадекана), цетановое число которого принимается за 100, в смеси с a-метилнафталином (цетановое число которого, в свою очередь, равно 0).


Когда дизельное топливо характеризуется такой же воспламеняемостью, определённой на опытном двигателе(ASTM D 613, EN 5165, ISO 5165, ГОСТ 3122 ), что и модельная смесь этих двух углеводородов, цетановое число данного топлива считается равным % доли цетана в этой смеси. Чем оно больше, тем лучше воспламеняемость смеси при сжатии.

Оптимальную работу стандартных двигателей обеспечивают дизельные топлива с цетановым числом 40-55. При цетановом числе меньше 40 резко возрастает задержка воспламенения (время между началом впрыска и воспламенением топлива) и скорость нарастания давления в камере сгорания, увеличивается износ двигателя. Стандартное топливо характеризуется цетановым числом 40-45, а топливо высшего качества (премиальное) имеет цетановое число 45-50.

Премиальное дизельное топливо более лёкое, содержит больше лековоспломеняющихся лёгких фракций и поэтому более пригодно для запуска двигателя в холодную погоду, кроме того, отношение водорода к углероду в лёгких фракциях выше, поэтому при сгорании такого дизельного топлива образуется меньше дыма.


При цетановом числе больше 60 снижается полнота сгорания топлива, возрастает дымность выхлопных газов, повышается расход топлива.


В некоторой степени цетановое число зависит от от группового состава топлива (доли парафинов, олефинов, нафтенов, ароматики). Парафины, способные к самовоспламенению при низких температурах, являются полезным компонентом дизельного топлива.

 

Фракционный состав 
 

 

Фракционный состав определяет полноту сгорания, дымность и токсичность отработавших газов двигателя;

Фракционный состав косвенно характеризует испаряемость дизельного топлива. Топливо с облегченным фракционным составом легче испаряется. Но применять дизельное топливо со слишком облегченным фракционным составом нельзя, так как такое топливо состояло бы из углеводородов, плохо самовоспламеняющихся, и его вязкость могла бы оказаться недостаточной. Применение дизельного топлива с утяжеленным фракционным составом, вследствие плохой его испаряемости, приводит к несвоевременному воспламенению и плохому сгоранию, дымному выхлопу и ухудшению топливной экономичности. Такое топливо затрудняет пуск холодного двигателя, особенно при низких температурах. Метод определения фракционного состава дизельного топлива принципиально не отличается от описанного метода определения фракционного состава бензина

 

Кислотность дизельного топлива

 

Кислотность характеризует содержание органических кислот в дизельном топливе и не должна превышать 5 мг КОН на 100 см3 топлива.

Содержание водорастворимых кислот и щелочей в дизельном топливе не допускается. В зависимости от содержания в дизельном топливе смолистых веществ и непредельных углеводородов проявляется его способность к образованию отложений и нагара в камере сгорания, на клапанах, форсунках и других деталях двигателя. Отложения нарушают нормальный режим работы двигателя (перегрев, ухудшение продувки и очистки от отработавших газов), приводят к ухудшению топливной экономичности и снижению мощности. Закоксование, например, распыливающих отверстий форсунки вызывает нарушение подачи топлива, а иногда обрыв головок форсунок. Причиной образования нагара могут также служить высокая вязкость и плохая испаряемость топлива.

Коксуемость выражается количеством в процентах образовавшегося твердого углистого остатка (кокса) после коксования навески топлива в специальном приборе. Коксуемость 10 % остатка не должна быть больше 0,3 % по всем маркам топлив.

Содержание золы определяется количеством в процентах остатка, образовавшегося после сжигания навески испытуемого топлива при помощи фитиля из бумажного обеззоленного фильтра и прокаливания твердого остатка до постоянного веса. Зола повышает нагарообразование в двигателе и может, попадая в масло, вызывать ускоренный износ. Техническими условиями содержание золы допускается не более 0,01 % для всех марок дизельного топлива.

Температура вспышки ограничивает содержание в топливе наиболее легких фракций и характеризует его огнеопасность. Температура вспышки – это та наименьшая температура, до которой нужно нагреть дизельное топливо в закрытом тигле, чтобы его пары образовали с воздухом смесь, вспыхивающую при поднесении к ней пламени. Температура вспышки должна быть не ниже 35°С для всех марок дизельного топлива.

 

Низкотемпературные свойства

 

Низкотемпературные свойства дизтоплива – характеризуются температурой помутнения, застывания и предельной фильтруемости. Они определяют способность топлива проходить через фильтры и обеспечивать прокачку по трубопроводам в условиях низких температур.

  • Температура помутнения – температура дизтоплива, при которой начинается кристаллизация парафина

  • Температура застывания дизтоплива – температура, при которой происходит полная потеря текучести

  • Температура предельной фильтруемости дизтоплива – температура, при которой топливо еще способно проходить через фильтр

Степень чистоты дизельных топлив

 

Степень чистоты дизельных топлив определяет эффективность и надежность работы топливной аппаратуры. Частицы размером более 4 мкм вызывают повышенный износ плунжерных пар. Чистоту топлива оценивают коэффициентом фильтруемости, который представляет собой отношение времени фильтрования через фильтр при атмосферном давлении десятой порции фильтруемого топлива по отношению к первой. На фильтруемость топлива влияет наличие воды, механических примесей, смолистых веществ, мыл нафтеновых кислот.

Содержание механических примесей в товарных дизельных топливах на месте их производства составляет 0,002-0,004%, что оценивается по ГОСТ 6370-83 как отсутствие.

 

Температура вспышки

 

Температура вспышки – наименьшая температура, при которой пары над
поверхностью горючего вещества вспыхивают при контакте с открытым источником огня и с ненасыщенным паром.

Для каждой горючей жидкости можно определить давление насыщенных паров. С повышением температуры оно растёт, таким образом, количество горючего вещества на единицу объёма воздуха над жидкостью также растет с ростом температуры. При достижении температуры вспышки содержание горючего вещества в воздухе становится достаточным для поддержания горения. Достижение равновесия между паром и жидкостью требует, однако, некоторого времени, определяемого скоростью образования паров. При температуре вспышки скорость образования паров ниже, чем скорость их горения, поэтому устойчивое горение возможно лишь при достижении температуры воспламенения.

Из-за сложностей прямого измерения температуры вспышки газов и паров, за неё принимают минимальную температуру стенки реакционного сосуда, при которой наблюдают вспышку. Эта температура зависит от условий тепломассообмена как внутри реакционного сосуда, так и самого сосуда с окружающей средой, объёма смеси, а также каталитической активности стенки сосуда и ряда других параметров.

Показатель применяется для определения допустимой температуры нагревания горючих веществ при различных условиях хранения и перевозки. Наиболее известным способом измерения температура вспышки является определение в закрытом тигле по Пенски-Мартенсу ASTM D93,ГОСТ 6356.

 

Сернистые соединения

 

Сернистые соединения, непредельные углеводороды и металлы (ванадий, натрий) влияют на процессы нагарообразования в дизелях, являются причиной повышенных износов и коррозии. Их содержание в топливе регламентировано.

 

Самовоспламеняемость

 

Самовоспламеняемостью называется способность дизельного топлива воспламеняться без источника зажигания. Самовоспламеняемость топлива оценивается цетановым числом, и от нее зависит протекание процесса сгорания топлива в цилиндрах двигателя. Для нормальной работы двигателя необходимо, чтобы топливо самовоспламенялось и в дальнейшем энергично сгорало, вызывая интенсивное, но достаточно плавное нарастание давления. В этом случае будет иметь место так называемая мягкая работа двигателя, т. е. не будет перегрузки его деталей, будет развиваться максимальная мощность и обеспечиваться необходимая топливная экономичность. Если же топливо самовоспламеняется не своевременно, а с запаздыванием, то это приводит к жесткой работе двигателя, напоминающей работу карбюраторного двигателя с детонацией. При жесткой работе детали двигателя работают с перегрузкой, что> приводит к ускоренному их износу и даже поломкам, перерасходу топлива, дымному выхлопу и снижению мощности.

 

Вязкость и плотность

 

Вязкость и плотность топлив во многом определяют процессы испарения и смесеобразования в дизелях. С их увеличением растет диаметр капель, и ухудшаются условия сгорания, в результате чего увеличивается расход топлива и дымность отработанных газов. Вязкость топлива влияет на наполнение и утечки топлива через зазоры плунжерных пар.

При работе на маловязких топливах увеличивается износ деталей топливных насосов, что требует применения в их составе противоизносных присадок. Вязкость топлива зависит от его углеводородного состава, в связи с чем варьирируется в широких пределах.

 


lider-invest.com.ua