Масло с высоким щелочным числом – Toyota Land Cruiser 4.5d 350Hp › Бортжурнал › Какое масло лить в дизель? Универсальное или специальное?

Содержание

Способно ли моторное масло мыть двигатель?

 

Заблуждения

В интернет сообществе часто встречаешь заблуждения типа «Я лью масло X — оно отлично отмыло мой двигатель! Двигатель блестит!» или «Двигатель слишком грязный каким маслом его помыть?». Мне часто задают вопросы «Посоветуй масло с хорошими моющими свойствами, а то двигатель очень грязный, а промывки использовать не хочу!» Производитель Shell — в рекламе заявляет «масла Shell Helix быстро удаляют отложения из загрязненных двигателей». По телевизору нам показывают кристально чистые поршня, омываемые свежим маслом. Как тут не поверить? У автолюбителя складывается ошибочное представление, что стоит залить какое то определенное масло и оно обязательно, за одну смену — отмоет весь двигатель от отложений. Это не так! Давайте попробуем разобраться в этом вопросе.

Виды отложений

Существуют три основных вида отложений в двигателе:

нагар — черного цвета, видим часто на поршнях и свечах накаливания

шлам — от коричневого до темного коричневого

 

лак — желтое, красное или темно коричневое прозрачное или полупрозрачное отложение. (как лак на мебели)

Все эти отложения, в той или иной мере, очень трудно отмываются моторным маслом. Практически никак. Для того что бы естественно сошел нагар — нужен «прожиг», время, чистый бензин, качественное масло — а порой его вообще ничем не отмыть, кроме замачивания деталей в различного рода растворителях.

Шлам (особенно высокотемпературный) — очень медленно отмывается моторным маслом. Нужны частые смены моторного масла, желательно с очень высоким щелочным числом и очень много времени — даже через 10 лет и 300 тыс км — ваш двигатель возможно полностью не отмоется моторным маслом.

Лак — еще более стойкое отложение — которое очень трудно отмыть моторным маслом. Практически не возможно! На нашем ресурсе встречались автолюбители, с красным или золотистым лаком, которые пытались отмыться моторным маслом, потом промывками «пятиминутками», потом промывками длительного действия, которые добавляются в масло и используются на ходу. Разочаровавшись в промывках, мы пытались отчистить лак в ручную, с щетками и техническим сольвентом — все тщетно! Мы пытались отмыть его 646 растворителем! Очень медленно и не эффективно. Разве что замочить в ведре на неделю…

Необходимо подчеркнуть что, все эти отложения очень плохо отмываются моторным маслом — в виду его недостаточной моющей способности! Моторное масло не создано для того, что бы отмывать двигатель. Оно безусловно обладает диспергирующими свойствами — свойством удерживать какое то время в себе взвесь частиц и забирать с собой при сливе. Нейтрализующими свойствами — свойством нейтрализовать кислоты (продукты которые образуются в процессе сгорания). Масла способны препятствовать слипанию частиц отложений в более крупные соединения. Но вот моющие способности моторного масла очень ограничены.

Масла способны предотвратить загрязнение двигателя, если проводятся своевременные замены масла, правильно выбран интервал замены масла, вы льете качественный бензин, не перегреваете мотор итд. Только профилактика и своевременные интервалы замены моторного масла, спасут вас от возникновения отложений в двигателе внутреннего сгорания.

Получить грязный двигатель очень легко, отмыть его потом — трудно!

В подтверждение моих мыслей, хочу рассказать вам о моем любительском эксперименте — который посвящен моющим свойствам моторного масла. Я являюсь обладателем прекрасного японского автомобиля Toyota Curren с очень неплохим мотором 3s-fe  — но по глупости запущенного состояния.

Вот его состояние до экспериментов:

Красавец правда? И так какие отложения мы тут видим? Высокотемпературный шлам в виде темно коричневой штукатурки  —  колодцы, ванна распредвалов. Лак — на кулачках, шестернях итд.

В то время, я думал что промывки «пятиминутки» это что то страшное — их не в коем случае нельзя использовать! Я обладал мнением, что если я залью качественное масло и буду менять почаще, то это все с легкостью сойдет.

Эксперимент 1 Промывка моторными маслами Valvoline Maxlife Synthetic 5W-40 и Valvoline VR1 Racing 5W-50.

Итак езжу 27 тыс км

 и делаю 6 смен перед тем как вскрыть крышку

Используемые масла:
1) Valvoline VR1 Racing 5W50 (Нидерланды) = 2 тыс км (использовал как промывку)
2) Valvoline VR1 Racing 5W50 (Нидерланды) = 5 тыс км
3) Valvoline Maxlife Synthetic 5W30 (США) = 5тыс км
4) Valvoline Maxlife Synthetic 5W40 (Нидерланды) = 5тыс км
5) Valvoline Maxlife Synthetic 5W40 (Нидерланды) = 5тыс км
6) Valvoline Maxlife Synthetic 5W40 (Нидерланды) = 5тыс км

Вскрываю клапанную крышку и фотографирую. Вот изменения:

    

На словах: На кулачках стало меньше лака. Свечные колодцы начали облазить — особенно 1й колодец. Пару деталей на валу отчистилось. И все это за 27 тысяч км(!) и 6 смен качественного высокощелочного(!) моторного масла!  Представьте сколько нужно ездить что бы отчистить этот двигатель моторным маслом до чиста! Тут и 200 тыс км не поможет.

Хорошо, может масло такое? Тогда возьмем масло другого бренда!

Эксперимент 2. промывка моторным маслом Neste City Pro 5W-40 (ACEA C3)

25 тыс км и 5 смен.

1) Neste City Pro 5W40 = 5 тыс. км
2) Neste City Pro 5W40 = 5 тыс. км
3) Neste City Pro 5W40 = 5 тыс. км
4) Neste City Pro 5W40 = 5 тыс. км
5) Neste City Pro 5W40 = 5 тыс. км

В итоге — практически никаких изменений! Это масло обладает низким щелочным числом, потому что является ACEA C3. В эксперименте 1 было масло с высоким щелочным 10.3 (на тот момент) — и оно отмыло лучше.

Вывод: Моторные масла обладают малой моющей способностью. Они практически не моют отложения! Поэтому когда по телевизору маркетологи показывают вам чистые поршня и пропагандируют «Наши масла отмывают двигатель изнутри!» — относитесь к этому с недоверием. Лучшая профилактика здоровья двигателя — это высококачественные масла и  — с самого начала эксплуатации, не затянутые интервалы смены! Как говорится — береги честь смолоду!

p.s. На эти эксперименты я потратил около двух лет — что бы доказать себе то, что моторные масла не моют. В итоге я решил пойти другим путем — промывать двигатель промывками пятиминутками, продолжать эксперименты. И вот что из этого вышло:

Промывки двигателя

Большая просьба, при размещении данной статьи на других ресурсах — указывайте ссылку на эту страницу! Уважайте чужой труд и желание поделиться накопленным опытом!

Автор статьи: Иванов Даниил, ник torcon

Обсуждение на форуме: Масла Neste, Масла Valvoline 

www.oil-club.ru

Ford Focus ST Супер комфортный › Бортжурнал › Моторные масла. Лучшие из лучших

Лучший из лучших автомасел
По изучал я тут литературы ridoilgroup.ru/files/motornie-masla.pdf форумы www.oil-club.ru/forum/forum/33-33/, тесты alexey-bass.github.io/bmwservice-oils/, статьи, книги, таблицы, спектральные анализы отработанных и свежих масел. Чуточку стал больше понимать. Итак, в чем задача масла, какие масла бывают, какие хорошие, какие плохие и т.д. Все это постараюсь рассказать в двух словах.
1. Цель масла, это уменьшение трения между трущимися деталями механизмов, охлаждение, борьба с окислением, удержание в себе продуктов окисления, испарения, нитрации, горения и воды.
2. Виды масел. Масла бывают разные, зависит от базового масла (1-я, 2-я, 3-я, 4-я, 5-я и 6-я группа) и содержанием в этих базовых маслах: ПАО, эстеров, загустителей, ZDDP, модификаторов трения, противоисзносных, антифрикционных, диспергирующих, противопенных, антидепрессантов и моющих присадок.

ПАО (полиальфаолефины) это высокий синтез газов из которых получают чистые масла. На рынке около 97% крекинги 1-й и 3-й группы. Из 97%, 10-20% это гидрокрекинг+ПАО, но ПАО там, как правило, не более 30%. От процентов содержания в той или иной базе присадок, загустителей, модификаторов, ПАО, эстеров и т.д. зависит и окончательное масло. И главное в масле его сбалансированность.

Также, на рынке встречаются масла и на основе полигликолей, углеводоров, алкилбензолов, изопарафинов, полиалкиленгликолевых эфиров, эфиров фосфорной кислоты, алкилированных нафталинов и т.д., но эти масла не прижились из-за несоответствия потребительским качествам. Эти основы больше стали использовать в производстве гидромасел, тормозных жидкостей, антифризов и т.д.

Мировая стандартизация групп масел по классификации API:
 Группа I — базовые масла, которые получены методом селективной очистки и депарафинизации растворителями (так называемые обычные минеральные)
 Группа II- высокорафинированные базовые масла, с низким содержанием ароматических соединений и парафинов, с более повышенной окислительной стабильностью (масла, прошедшие гидрообработку- улучшенные минеральные). Придают молекулам более линейный вид, расщепляя из молекулярных связей вредные, с точки зрения физико-химических качеств, веществ.

 Группа III- базовые масла с высоким индексом вязкости (70-120), полученные методом каталитического гидрокрекинга (ГК масла) (НС-технология). В ходе специальной обработки еще более улучшают молекулярную структуру масла, придавая молекулярным связям еще более линейный вид. Некоторые производители относят данную группу к минеральным маслам, некоторые к полусинтетическим, а большинство производителей относят к синтетическим базовым маслам, хотя, по сути, это то же минеральное масло, работающая на тех же нефтяных парафинах, асфальтенах, нафтенах, ароматических и других смешанных соединениях. Но основным работающим веществом в ГК маслах являются полимерные загустители. Все ГК масла между собой отличаются только видом и качеством полимерных загустителей. Загустители это отдельная большая тема!

 Группа IV– синтетические базовые масла на основе полиальфаолефинов (ПАО). Полиальфаолефины, получаемые в результате химического процесса, имеют характеристики единообразной композиции, очень высокую окислительную стабильность, высокий индекс вязкости и не имеют молекул парафинов в своем составе. То есть фактически масло собирают как конструктор, получая молекулы нужной длины. Такая технология позволяет получать абсолютно однородную структуру масла лишенную примесей серы и металлов.

Они отличаются универсальными смазочными свойствами, могут работать в самых широких диапазонах температур (от -70С до 250С). Обладают высоким индексом вязкости и стабильностью свойств на протяжении всего срока службы, не вызывают коррозии металлов, не образует нагара, лака и отложений. Не оказывают отрицательного влияния на материалы прокладок и уплотнителей. Хорошо смешиваются с минеральными маслами. ПАО масла начали применять в двигателях и механизмах работающих в тяжелых условиях (авиация, в качестве индустриальных масел, гидравлических жидкостей, для мощных дизельных двигателей морских судов и в автоспорте).
 Группа V – другие базовые масла, не вошедшие в предыдущие группы. В эту группу входят другие синтетические базовые масла и базовые масла на растительной основе, так сказать Эстеры. — Эстеры это сложные эфиры, Соединения органических кислот обладают максимальной маслянистостью (липкостью) из-за плотной и четкой линейной связи молекул, что благоприятно сказывается на коэффициенте трения в узлах двигателя. Молекулы эстеров полярны, благодаря чему, отрицательно заряженые молекулы масла притягиваются к положительно заряженой поверхности металла. Результатом будет постоянное присутствие слоя смазки в узлах двигателя. Также к положительным свойствам можно отнести высочайшую стойкость и плотность масляной пленки (смазывающая и несущая способность в 20 и более раз! превышает смазывающую способность ГК масел на базе 3 гр.), его отличные моющие способности, термостабильность от крайне низких температур -65С до крайне высоких температур 350С и не поддаются к деформациям сдвига. Так же Эстеры обладают высокой противоокислительной стабильностью, характеристики имеющего эстеры моторного масла будут оставаться высокими на протяжении всего межсменного пробега
 Группа III+ – GTL (Gas-To-Liquid, «газ в жидкость»). Вопреки названию технологии из газа первым делом получают не жидкость, а твердое вещество — белоснежный и почти непахнущий парафин. Сначала выделенный из природного газа исходный метан частично сжигается, превращаясь в синтез-газ, смесь монооксида углерода (угарного газа) и водорода. А дальше в реакторе в присутствии катализатора с содержанием драгметаллов (формула катализатора — и есть главный секрет процесса!) из синтез-газа получается чистейший, без всяких примесей, расплавленный парафин (sincrude, «синтез-нефть»). Дальше — изомеризация, то есть обычный гидрокрекинг, как у нефтехимиков: длинные цепочки молекул парафинов «режутся» до нужного размера — и получаются нафта (прямогонный бензин), дизтопливо или масло. Недостатками GTL — отсутствие полярности. Масло быстро стекает со стенок цилиндров в картер, что особенно неприятно при запусках в мороз. Но, как и у ПАО, это «лечится» добавкой полярных эстеров, либо более дешевых алкилированных нафталинов. Чрезмерно разжижается при повышении температуры, из-за чего требует большого количества разного рода полимерных загустителей, горит, коксуется.

Можно объяснить так:
 Группа 2 (минеральные масла)
 Группа 3 (гидрокрекинговые масла, в т.ч. GTL, т.е. минеральные масла сверхвысокой очистки методом гидрокрекинга)
 Группа 4 (синтетические масла PAO, то есть полиальфаолефины, полученные из газа методом синтеза)
 Группа 5 (эстеры, получаемые из растительного сырья. Много видов: одинарные, двойные, комплексные, полимерные, полиолэстеры, оптимизированные полиолэстеры)
 Группа 5+ (PIO, полигликолевые, полиинтернаолефины, не распространены из-за ряда отрицательных качеств по отношению к металлам).

По прошествии десятков лет в производстве автомасел лучшими себя показали смесь ПАО+полиэфиры (эстеры).

Лучшей смазывающей способностью наделены вещества обладающие большей маслянистостью.
Самая высокая маслянистость у сложных эфиров растительного происхождения (5 гр.масел). Далее идут животные жиры. И слабая маслянистость есть у нафтенов и асфальтенов.
Маслянитость — т.е. липкостность, обуслаливается полярными свойствами молекул. Данные вещества имеют вязкость за счет внутренней плотности и прочной склеиваемости друг другу.

У нефтяных минеральных масел 1-2 гр. маслянистость слабая, т.к. есть небольшая полярность, из-за содержания в них асфальтенов и нафтенов.

У нефтяных минеральных(псевдосинтетических) масел 3 гр.(гидрокрекинг) полярности нет, т.к. очищены. Данные масла работают только за счет вязкости — содержания в них полимерных загущающих присадков.

Загустители, какие бы они качественными не были, вскоре после небольшого пробега (1-3 тыс.км) теряют свои вязкостные свойства, т.е. вязкость, из-за механической и термической деструкции молекул.

Масла 4-5 гр. (синтетические) не теряют вязкость до конца срока службы масла, т.е. до полного окисления и более (более 40 ты.км пробега). Обладают высокой полярностью и липкостными качествами.
Можно в этом легко убедиться, когда пачкаются руки их трудно вытереть. На весь день руки становятся маслянистыми и не смываются. Обычные масла легко вытераются тряпкой.

Большинство современных масел основано на смеси нескольких групп базовых масел и пакетов присадок, что позволяет сгладить недостатки отдельных групп базовых масел. Для понимания этого выделяют семь свойств базовых масла:
— Смазывающие способности. Лучшими смазывающими способностями обладают эстеры, затем ПАО, далее минеральные масла 1 и 2 групп и самой низкой смазывающей способностью обладает 3 группа ГК масел, в т.ч. GTL.
— Способность работы при экстремально низких и высоких температурах. Отмечаются отличные температурные свойства у PAO и эстеров (до -70С).
— Неокисляемость, то есть способность долго работать без изменения свойств базового масла. Быстрее всего окисляются минеральные и гидрокрекинговые масла. Окисляемость ведет к самому главному виду износа – это «Коррозионный износ».
— Гигроскопичность, то есть способность впитывать воду. Вода в масле ухудшает смазывающие, антипенные и антикоррозионные свойства. В Российском топливе содержится большое количество серы. Сера смешиваясь с водой образует серную кислоту, что приводит к большому коррозионному износу.
— Полярность (липкостность, маслянистость, смазывающая способность — в научной литературе это одно и то же). Пожалуй это самое важное свойство. в частности способность не стекать со стенок в картер, что особенно хорошо для минимизации пуска в мороз. Но межслойное трение полярных масел ухудшает топливную экономичность, т.е. создает более плотное сопротивление к сдвигу. Поэтому эстеры используются обычно как добавка (1-10%) для улучшения пусковых, температурных и противоизносных свойств. Появились дешевая альтернативы эстерам в виде полярных алкилированных нафталинов, не склонных к гигрогскопичности, но по сумме характеристик все-таки сильно уступают эстерам.
— Испаряемость (и сопутствующий угар масла). Измеряется методом NOACK для 1, 2 и 3-х групп — более 10%, для групп 4 — менее 9%, для 5 группы – менее 4-5%, для смеси 4 и 5 групп – 4-7%.
— Цена. Самая большая у PAO и эстеров. Но учитывая, что ПАО эстеровые масла работают в 10 раз дольше, тех же ГК масел, без никаких изменений в свойствах (3 тыс.км против 30 тыс.км), то вопрос цены спорный момент.

Используемые базовые масла и пакеты присадок определяют разницу в свойствах конкретных моторных масел.

Проблема Мирового Маркетинга и запудривания мозгов покупателей! Пожалуй самая большая проблема современности.

Вопрос двойной терминологии некоторых слов: о синтетичности с точки зрения состава или о синтетичности с точки зрения свойств? Инженерные и маркетинговые понятия не имеют ни чего общего между собой! Маркетологи (из понятных соображений) всё больше налегают на второй термин, что позволяет им массово продавать минеральные нефтяные масла малосведущим потребителям как «полностью синтетические» или как Motul "100% синтетическое". Где слово "синтетическое" не имеет ни чего общего с понятием синтетика.

И у гидрокрекинга, и у PAO, и у эстеров есть набор индивидуальных недостатков.

Например, PAO базовые масла (группы 4), сделанные из газа сами по себе плохо растворяют присадки, что лечится введением других базовых масел групп 1, 2 и 5 групп.

Гидрокрекинговые базовые масла (группы 3) быстро угорают, быстро окисляются и имеют слабые низко и высокотемпературные свойства. Но это только на бумаге, по причине содержания в них полимерных загустителей, которые сильно приукрашивают характеристики масел на бумаге. Но стоит такому маслу немного поработать и через 1000 км пробега все свойства тут же улетучиваются, в следствии деструкции молекул полимерных загустителей. Недостатки лечатся например пакетами присадок или традиционным добавлением PAO в масла 503.01 или 504.00/507.00, что позволяет улучшить испаряемость и Pour point в конечном продукте.

PAO масла, и GTL-масла появились ещё в Третьем Рейхе, до и в послевоенном СССР в авиации.

Все производители масел для раскрутки товара, как правило используют ПАО и эстеры (от 5 до 50%) в своих ТОПовых марках. Эти масла скорее имиджевые и через 2 года утрачивают свои супер способности, когда наберут достаточно рекламы и покупателей. ПАО эстеры тихо сменяет ГК+загустители.

Полностью синтетических масел в Природе не бывает. Встречается но редко. Можно отметить только старые Татнефть и родоначальник всех ПАО эстеровых масел (в автомобильном рынке) Amsoil.

ПАО с добавлением эстеров превосходит любые другие масла. Плюсы у ПАО также в части стабильности к старению, температурным колебаниям и к смазывающим свойствам.

Также, на рынке, очень много недобросовестных разрекламированных производителей, которые обычные минеральные гидрокрекинги выдают за полную синтетику и продают по цене ПАО, это касается всех производителей. Чем выше процент синтетики (обычно не более 50% по анализам), тем масло более стабильнее и сильнее.

Как оценивать масла? По характеристикам. А откуда узнать характеристику? Это уже второй вопрос, тут в помощь идет интернет. Обычно в паспорте производителя, характеристики не очень совпадают с реальными анализами свежего масла или бывают, что одно и тоже масло сильно различаются по характеристикам и базам, в зависимости от партии. Опять вопрос к производителям.

— Индекс вязкости (ИВ), находится соотношением вязкости при 40С и 100С градусах. По нему можно узнать также о базе. У синтетических ПАО масел с добавлением эстеров ИВ обычно около 145-165. У гидрокрекинговых, в т.ч. GTL масел с добавлением большого количества полимерных загустителей ИВ вырастает до 170-190. У синтетических масел ИВ не достигает таких величин. Принято считать, что потолком для индекса вязкости является 120. Увеличение данного параметра выше 120 не дает более ни какого существенного преимущества.

Индекс вязкости (ИВ) складывается из базы:
1) ПАО (4,5,6 cst) — ИВ = 120-140
Эстеры — ИВ = 200 и выше.
Итого: ПАО+эстеры ИВ = 140-160

2) ИВ масел на гидрокрекинге складываются из:
баз ГК (3-3,5 cst) ИВ = 70-100 + Полимерные загустители (от 13 до 30%) = 175 — 190

3) Полусинтетические масла (не путать с теми, что на рынке! На рынке полусинтетическим маслом называют масла 1гр./2гр.+3гр.):

ПАО(от 10 до 70%) + эстеры (3-15%) + ГК (40-70%) + полимерные загустители (10-13%) ИВ= 170-180

— Щелочное число. Щелочное число показывает, сколько мг гидроокиси калия потребовалось, чтобы быть эквивалентной всем щелочным компонентам в 1 гр масла. Чем выше щелочное число, тем больше проживет масло, отмоет грязи, будет дольше сопротивляться старению, больше продуктов отхода удерживать в себе и т.д. Но тут еще многое зависит от базы. ПАО масло с щелочным числом 7 будет держать это число как вцепившийся бульдог! Нежели гидрокрекинговое масло с щелочным числом 10-15 мг КОН на 1г, быстро растеряет это число по причине растраты щелочных присадок на нейтрализацию большого количества углеродистых веществ (продуктов окисления). А эстеровое масло соответственно еще дольше, чем ПАО.

— Кислотное число. Кислотное число показывает, сколько щелочи потребовалось, чтобы нейтрализовать слабые и сильные кислоты в 1 мг масла.

— Зольность. Зола образуется при сгорании присадок. В основном показывает количество традиционных противоизносных и моющих присадок. Чем их больше, тем больше зольность, т.к. в них содержатся соли металлов. Больше всего золы дает сульфонат кальция. Для современных двигателей зольность не должен превышать 1.5-1,8% для бензиновых двигателей и 1.8-2% для дизельных. Проблема зольности раскручена маркетологами и экологами, дабы снизить выбросы фосфатов, снизить себестоимость масла и раскручивать новые дешевые пакеты беззольных малоэффективных присадок.

— Температура застывания (кристализации). Потеря текучести. Показывает, насколько синтетична база или содержание количества антидепрессантов и загустителей, их качество. У ГК базы 3 группы температура застывания -14С -23С. Добавляя антидепрессанты дотягивают температуру застывания до -36С -42С. У ПАО и эстеровых масел обычно температура застывания от -47С до -70С. Зависит от вязкости базы ПАО и его процентного соотношения в масле.

— Температура вспышки. При сгорании масла выделяются тяжелые углеводородные соединения, происходит коксование, лаковые отложения, также при высоких температурах масло начинает активно окисляться-происходит коагуляция (укрупнение продуктов окисления), нитрация, полимеризация загустителей (полимеризация — см.ниже на картинках). Обычно у ГК масел температура вспышки от 190 до 230С. У ПАО эстеровых масел от 230 до 260С. У GTL масел примерно 235С — благодаря содержанию большого количества полимерных загустителей (более 25%

).

— Динамическая вязкость при -25С, -30С и -35С — CCS. Прокачиваемость. Зависит от вязкости базы или его синтетичности, т.е. термостабильность. Чем более мельче и однороднее состав молекул, тем выше прокачиваемость. Чем ниже данное число от 6600 мПа*с, тем более термостабильнее масло. Для зимних синтетических масел оно обычно равно от 2800 до 5400 мПа*с.

— Испаряемость по методу NOACK. Также является основным показателем при выборе масла. Показывает сколько процентов испарится масла в течении 1 часа при температуре 250С. Чем ниже данный показатель %, тем более синтетичнее и термостабильнее масло. Но и этот параметр легко рисуется применением большого количества полимерных загустителей (пример GTL масла — NOACK 6-8%, по факту без загустителей или после сработки загустителей данный параметр вырастает до 13-15%).

По количеству противоизносных и моющих присадок явный лидеры старые пакеты присадок (допуски по API SJ, SL, SM)

Количество эстеров можно узнать по температуре застывания, по температуре вспышки, по испаряемости NOACK, по количеству содержания продуктов окисления и самое главное по спектральным анализам. Обычно глаза набиваются и по обычному химическому анализу сразу видишь количество эфиров и ПАО. Также количество Эстеров легко определяется по запаху и на ощупь. Эстеровое масло не стекает со щупа. Обусловлено это полярностью Эстеров — липнут к металлу. Испачканные эстеровым маслом руки трудно вытереть тряпкой, руки на долго остаются жирными и маслянистыми.

Еще раз что такое:
 Щелочное число. Это число показывает на сколько км пробега хватит масла. Если данное число уменьшилось на 50% от исходного, то это означает, что масло умерло или начинает резко умирать — начинается вторая стадия окисления — коагуляция. Если кислотное число превысило щелочное, то это означает, что масло начало активное смолообразование. Кислотность масла разъедает все части двигателя. Кислотность перестает нейтрализоваться, образовывается шлак, шлам, нагар и оседает высоконагретых в частях двигателя (канавки поршневых колец, клапана и турбина) затрудняя работу ДВС. Чем больше, тем лучше. Но более 10 мг КОН/г к присутствует абразивный фактор. Обычно у ГК масел это число снижается до 2-4 мг КОН/г к 8000 км пробега. Поэтому ГК масла лучше менять масло до 7 тыс. км пробега.

 Индекс вязкости. Чем больше вязкость, тем лучше. Вязкость защищает детали от трения. Обычно, производители делают дешевые кряки, добавляют туда дешевые загустители, которые при относительно не высоких температурах теряют вязкость, угарают, а при низких температурах просто застывают. Если вязкость чрезмерно высокая, тогда это плохо, до трущихся деталей попросту масло не будет доходить. Если, например, вязкость масла при 100 градусах около 14-17 мм/с, а динамическая вязкость CCS на морозе, при -30С около 3100, это означает, что масло очень хорошее, имеет синтетическую ПАО базу, либо с содержанием эстеров.
Как правило ГК масла имеют индекс вязкости при 100 градусах около 8-13 мм/с, а динамическая вязкость на морозе CCS, при -30С около 4500-6500. Это означает, что при -30С масло не прокачивается. Холодный запуск на таком масле чревато. Чем больше вязкость при 100 градусах и CCS меньше, тем лучше. ГК масла делают изначально на низковязкой базе, а затем добавлением загустителей, догоняют последнюю цифру Y, спецификации SAE хW-Y. Поэтому такие масла не пригодны для тяжелых условий эксплуатации.

 Температура замерзания. Один из важных показателей, характеризующий работу масла в зимнее время, и по данному показателю тоже видно, сколько там содержится ПАО или эстеры.

 Температура вспышки. Этот самый важный показатель характеризует масло на то, на сколько он будет гореть при высоких температурах. При горении образуются тяжелые углеродистые соединения, которые закоксовываются на трущихся деталях и забивают (закупоривают) маслоканалы, после чего масло перестает доставать до нужных, отдаленных от маслонасоса участков двигателя. Также забиваются маслосъемные кольца и масло начинает уходить через камеру сгорания или продукты горения постепенно выталкивают кольца из канавок поршней и начинается усиленный износ и полировка цилиндров.

Противоизносные-противозадирные присадки ZDDP (zinc dialkil dithiophosphate — диалкилдитиофосфат цинка — фосфор+цинк). Начинают работать в режиме сухого трения, когда рвется масляная пленка.
На сегодняшний день ZDDP лучшая противоизносная присадка (последние самые крупные исследования проходили в 2015 году) в 2-3 раза опередил беззольные аналоги PFC SSC, как по скорости образования твердой пленки, так и по толщине.

Слишком большое количество ZDDP создает толстую подушку и начинается абразивный износ. Большое количество ZDDP обычно применяют в трансмиссионных маслах, где важно защита от задиров и ударно-сдвиговых нагрузок.

Модификаторы трения – это присадки регулирующие фрикционные свойства – коэффициент трения смазываемых поверхностей. В основном применяют молибден (moDTC либо MoS2/S3), Бор, Вольфрам. Молибдена, также снижает шумность ДВС и улучшает экономичность.
Молибден и Бор они больше как вспомогательные вещества, нежеле как абсолютная противоизносная присадка.
Молибден это вообще отдельная тема, очень большая. Слишком уж много нюансов с молибденом. И температурный диапазон у него узкий и коксуется свыше относительно небольших градусов (300С) и т.д. и т.д. Причем, в чистом виде молибден не применяют. Применяют его в основном в виде МоDTC. Далее он сам вступает в реакцию с продуктами окисления и износа (сера), образуясь, затем, в МоS2. Также Молибден больше применяют в низкотемпературных узлах, где меньше кислорода (трансмиссия), т.к. под действием кислорода и больших температур (350-450С) молибден коксуется, укрупняясь дает абразивный эффект. Бор же не боится температуры, обладает более высокими противоизносными свойствами.
Молибден проявил себя лучше, чем графит и титан. Бор, в свою очередь, лучше молибдена. Также, если молибден применяют в качестве модификатора трения, то Бор применяют еще в качестве противоизносного присадка. Молибден каким-то образом помогает лучше работать ZDDP, т.к. ZDDP лучше держится за металл при наличии Молибдена.
Некоторые производители вообще не приемлят ни Молибден, ни Бор, только ZDDP, к примеру Аддинол. В чем-то они правы.

Более коротко:
Молибден и Бор эффективны в строго в определенных пропорциях. Как правило не более 100-120 мг/кг. В реальных условиях эти пропорции не возможно соблюсти. Их основные преимущества это не сколько уменьшение износа, а больше уменьшение трения и снижение расхода топлива, а вместе с ним и улучшение экологических характеристик. Также, Молибден и Бор лучше справляются с задирами нежеле с износом.

При применении молибденовых и бор содержащих масел нужно учитывать двигатель и его термонагруженность. В более термонагруженных двигателях лучше применять масла с Бором, чем с Молибденом.

Инженеры разработчики двигателей Мерседес, БМВ, Ауди не рекомендуют Россиянам применять новые масла с последними допусками из-за их малой противоизносной способности и способности борьбы с кислотами, по причине плохого качества топлива и тяжелых условий эксплуатации. Они рекомендуют полнозольные масла с полным содержанием ZDDP.

Моюще-диспергирующие присадки. К этим присадкам можно отнести кальций, магний и ZDDP для борьбы с кислотностью и вымывания продуктов горения, они также имеют и диспергирующие свойства.

Итак, если провести анализ анализов всего и вся (Ойл Клаб, Бобойл):
База масла должна быть ПАО+Эсстеровой. Полнозольник! Масла со спецификациями АСЕА Сх для условий РФ не подходят!
ZDDP (цинк/фосфор) — 1200-1300 мг/кг
Бор от 80 до 120, не более
Молибден лучше не использовать.
Кальций — 3600-4200 мг/кг для эффективного противодействия серной кислоте.

Лидер в абсолютном зачете (выбирал, чтобы в продуктах износа не было алюминия, хрома, меди и минимум железа):
Татнефть Синтетик 5W-30 отработка на Mitsubishi Lancer Evolution 7 (к сожалению больше не производится. Иностранцы запретили производить ПАО в России)

Что касаемо допусков, то это чистой воды маркетинг и требования экологии.

Анализы масел можно найти, к примеру, тут: www.oil-club.ru/forum/top…gopid__213713#entry213713

www.zr.ru/content/article…_i_motorov_ubijca_najden/
Смерть масла и моторов: убийца найден

Продолжение темы тут:
www.drive2.ru/l/3948914/

www.drive2.ru

Выбираем масло 5W40: элита в цилиндрах

Восемь премиум-синтетик класса 5W-40 отправили на ресурсный тест сотрудники редакции и профессор кафедры ДВС Санкт-Петербургского политехнического университета.

Как долго может ходить двигатель без смены моторного масла? В сервисных книжках современных автомобилей указан интервал ТО с заменой масла 15 000–20 000 км. А производители синтетик часто увеличивают заявленный ресурс еще на десяток тысяч километров. Насколько обоснованны такие цифры? Не навредит ли «долгожитель» мотору? Проверим на практике.

Вот это — отложения, которые оцениваются в 0,5 балла по нашей шкале.

Вот это — отложения, которые оцениваются в 0,5 балла по нашей шкале.

Вот это — отложения, которые оцениваются в 0,5 балла по нашей шкале.

А это — полтора балла высокотемпературных отложений.

А это — полтора балла высокотемпературных отложений.

А это — полтора балла высокотемпературных отложений.

ЧЕРЕЗ ЕВРОПУ И АЗИЮ

15 000 км — это очень далеко! Примерно как от Лиссабона до Владивостока. Брать в такой пробег канистру масла на замену или достаточно литра на доливку? Вместо красот Европы и просторов Азии будем лицезреть стены испытательного бокса: там свои прелести... А «поедут» сразу два одинаковых движка — впрысковые вазовские восьмиклапанники. Только так обеспечим проверяемым маслам идентичные условия работы в течение всего «пробега». Чтобы приблизить вазовские «восьмерки» к моторам посовременнее, повысили на единичку степень сжатия и добавили систему масляного охлаждения поршней.

Материалы по теме

На испытания взяли так называемые полные синтетики класса вязкости 5W-40, причем самых раскрученных брендов: Castrol («Кастрол»), Shell («Шелл»), Mobil («Мобил»), Esso («Эссо»), BP («Би-Пи»), elf («Эльф»), Total («Тоталь») и ZIC («Зик»). Такой набор охватывает примерно три четверти рынка в данном сегменте. По европейской классификации все выбранные масла относятся к высокой группе качества — А3/В3/В4. По классам качества API распределение такое: большинство масел — SM/CF, «Кастрол» — SN/CF, остальные — SL/CF. На фото и в таблицах исследуемые масла расставлены по алфавиту. Как обычно, масла закупили в профильных магазинах двух столиц. Нас ждал длинный «забег» продолжительностью почти в полгода. Такого мы еще не делали.

И НА ТИХОМ ОКЕАНЕ

...свой закончили поход. Остатки всех масел слиты в канистры, моторы разобраны, обмеры и снимки сделаны. 1. (Схема слева) сравнение энергосберегающего эффекта испытуемых масел и способности повышать мощность двигателя. Все масла свежие, только что из канистры, а в качестве базы, то есть исходной планки отсчета, — простенькая минералка 10W-40 класса API SJ(схемы открываются в полный размер по клику мышки) :

11_no_copyright

www.zr.ru

что важно знать о нём при выборе масла

Товар успешно добавлен в корзину Главная О компании Доставка и оплата Как получить скидку Контакты Шины Подбор масел Точный подбор запчастей Оформляя заказ через корзину - получаешь скидку 5% Киев, ул. Симиренко 16А Искать запчасть по номеру детали Обратный звонок (050)779-46-99 viber
(096)362-16-73
(098)061-08-99 viber
(063)296-40-83
Масло Легковые автомобилиФураМикроавтобусыКарьерная техникаЛегкий коммерческий транспортСельскохозяйственная техникаСпортивные автомобилиМотоциклы, скутераКвадроциклы, картингиСнегоходыОружейноеВилочное маслоЛодки, гидроциклы, катера, смазкиСадовая техникаГидравлическое и компрессорное маслоДля СТО ХомутыИзолентаКонсистетные смазкиВысокотемпературная смазка для подшипников и ступицСмазка с содержанием графита для крестовин и шарнировСмазка для централизованных систем смазкиЗапчасти Легковые автомобилиГрузовые автомобилиМотоциклыОригинальные запчасти ACURA/HONDABMWHYUNDAI/KIAGENERAL MOTORSFIAT/LANCIA/ALFA ROMEOLand RoverMAZDAMITSUBISHINISSANPORSCHESUBARUSUZUKITOYOTAVAGАккумуляторы‎ АвтоМотоАвтохимия Для автомобилей АроматизаторыЗимние продуктыОчистителиПрисадкиПромывочные маслаРевитализантыСредства для системного охлажденияУдалитель влагиФункциональные продуктыАвтокосметика Автокраски и покрытияАвтошампуни и полиролиАксессуары для мытья и полировкиДля кузоваДля салонаДля шин и дисковЖидкость для стёколСредства для ремонта автомобиля Антикоррозийная обработкаБандаж для ремонта системы выхлопаСмазкиСпециальные спреиФормирователи прокладок, клеи, герметики

ad-oil.com.ua

Щелочные свойства и число в моторном масле — DRIVE2

Полный размер

В состав моторного масла для бензиновых и дизельных двигателей внутреннего сгорания входят химически активные присадки предназначенные для поддержания его рабочих свойств в течение регламентированного эксплуатационного периода. Одними из важнейших компонентов комплекса присадок являются щелочные агенты.
Во время работы двигателя в камере сгорания происходят сложные химические процессы в результате которых углеводороды топлива с кислородом воздуха образуют агрессивные по отношению к внутренним узлам соединения. Продукты сгорания имеют кислую реакцию и вызывают преждевременное «старение» смазки и способствуют износу и коррозии двигателя.
Химические процессы в системе смазки двигателя
Кислоты, как известно, нейтрализуются с помощью щелочи, и в случае с двигателем внутреннего сгорания химические процессы имеют схожий характер. Так как между стенками цилиндра и кольцами поршня имеются зазоры (выражены в изношенных двигателях), небольшая часть отработанных газов может попадать в картер (картерные газы), где оседает на стенках и вступает в реакцию со смазочным материалом. Реакции нейтрализации проходят в масляной среде двигателя: картере, масляных каналах, на стенках и шестернях масляного насоса. По мере эксплуатации, щелочной компонент присадок постоянно вступает в реакцию и со временем нейтрализует все меньше побочных продуктов работы двигателя. Некоторое число непрореагировавших соединений оседает в виде шлама и сажи на частях системы смазки, засоряя масляные каналы и ухудшая циркуляцию. Эти процессы могут привести к следующим последствиям:
-Масляное голодание распределительного вала и как следствие износ его опорных шеек;
-Засорение масляных каналов в коленчатом вале и преждевременное срабатывание вкладышей.
Индекс TBN
В обозначении моторного масла кроме таких параметров как вязкость и температурный режим указывается индекс TBN — щелочное число. Это величина соответствующая общему содержанию (мг.) щелочных присадок в 1г. масла.
В бензиновых карбюраторных двигателях требования содержанию щелочных компонентов не такие высокие -в 1г. моторного масла может содержаться 2-3мг, нейтрализующей композиции. Для двигателей работающих на топливе с высоким процентом содержания серы, высоконагруженных дизелей рекомендуется использование масла щелочное число которого выше, в нем содержание гидроксидов может доходить до десятков мг./г.
Каждый разработчик присадок стремится найти оптимальное щелочное число изменяя состав присадок. Если в состав ввести слишком много гидроксидов, то это также приведет к началу коррозионных процессов, и по мере выработки будут накапливаться зольные отложения.

Повышение кислотности ↑

Для моторных масел также используется такая характеризующая его химические свойства величина как кислотное число. В процессе эксплуатации смазки кислотность ее повышается из за выработки нейтрализующих свойств присадок. Если в масло попадет вода, то его кислотность может существенно увеличиться. Причины, по которым повышается кислотное число могут заключаться в неисправности двигателя-высоком износе поршневых колец, дефектах стенок цилиндров.

Снижение щелочности ниже определенного производителем порога означает выработку ресурса и предполагает замену масла и масляного фильтра. При снижении этого показателя ниже 50% от первоначального значения масло считается отработанным и подлежит замене.

Автомобилистам не обязательно знать насколько упало щелочное число, достаточно содержать автомобиль в исправном состоянии и проводить регламентную замену смазочных материалов. В диагностической лаборатории возможно установить число щелочных и кислых компонентов на единицу массы моторного масла, но подобный дорогостоящий тест не имеет никакого практического смысла, т.к. дешевле произвести замену. Замену можно сделать и без использования специальной промывки, залив порцию обычного масла и проехав небольшое расстояние. Содержащиеся в нем «свежие» присадки нейтрализуют остатки старых кислотных продуктов оставшиеся в масляной системе двигателя, и после этого можно будет залить уже новую рабочую порцию смазки.
В заключение, можно добавить, что заливая в автомобиль масло с неизвестными характеристиками владельцы рискуют необратимо вывести из строя двигатель.

Разработка присадок и проведение испытаний, это наукоемкий процесс, требующий наличия соответствующей материально-технической базы и испытательной лаборатории. В домашних условиях точно повысить щелочность до нужного уровня простым добавлением KOH невозможно — технология ввода присадочных компонентов применяемая в промышленности сложная и многоступенчатая, воспроизвести ее в быту невозможно.

www.drive2.ru

Щелочное число моторного масла

В состав моторного масла для бензиновых и дизельных двигателей внутреннего сгорания входят химически активные присадки предназначенные для поддержания его рабочих свойств в течение регламентированного эксплуатационного периода. Одними из важнейших компонентов комплекса присадок являются щелочные агенты.

Во время работы двигателя в камере сгорания происходят сложные химические процессы в результате которых углеводороды топлива с кислородом воздуха образуют агрессивные по отношению к внутренним узлам соединения. Продукты сгорания имеют кислую реакцию и вызывают преждевременное «старение» смазки и способствуют износу и коррозии двигателя.

Кислоты, как известно, нейтрализуются с помощью щелочи, и в случае с двигателем внутреннего сгорания химические процессы имеют схожий характер. Так как между стенками цилиндра и кольцами поршня имеются зазоры (выражены в изношенных двигателях), небольшая часть отработанных газов может попадать в картер (картерные газы), где оседает на стенках и вступает в реакцию со смазочным материалом. Реакции нейтрализации проходят в масляной среде двигателя: картере, масляных каналах, на стенках и шестернях масляного насоса. По мере эксплуатации, щелочной компонент присадок постоянно вступает в реакцию и со временем нейтрализует все меньше побочных продуктов работы двигателя. Некоторое число непрореагировавших соединений оседает в виде шлама и сажи на частях системы смазки, засоряя масляные каналы и ухудшая циркуляцию. Эти процессы могут привести к следующим последствиям:

  • Масляное голодание распределительного вала и как следствие износ его опорных шеек;
  • Засорение масляных каналов в коленчатом вале и преждевременное срабатывание вкладышей.

В обозначении моторного масла кроме таких параметров как вязкость и температурный режим указывается индекс TBN — щелочное число. Это величина соответствующая общему содержанию (мг.) щелочных присадок в 1г. масла.

В бензиновых карбюраторных двигателях требования содержанию щелочных компонентов не такие высокие -в 1г. моторного масла может содержаться 2-3мг, нейтрализующей композиции. Для двигателей работающих на топливе с высоким процентом содержания серы, высоконагруженных дизелей рекомендуется использование масла щелочное число которого выше, в нем содержание гидроксидов может доходить до десятков мг./г.

Рекомендуются масла с высоким щелочным числом

Каждый разработчик присадок стремится найти оптимальное щелочное число изменяя состав присадок. Если в состав ввести слишком много гидроксидов, то это также приведет к началу коррозионных процессов, и по мере выработки будут накапливаться зольные отложения.

Для моторных масел также используется такая характеризующая его химические свойства величина как кислотное число. В процессе эксплуатации смазки кислотность ее повышается из за выработки нейтрализующих свойств присадок. Если в масло попадет вода, то его кислотность может существенно увеличиться. Причины, по которым повышается кислотное число могут заключаться в неисправности двигателя-высоком износе поршневых колец, дефектах стенок цилиндров.

Снижение щелочности ниже определенного производителем порога означает выработку ресурса и предполагает замену масла и масляного фильтра. При снижении этого показателя ниже 50% от первоначального значения масло считается отработанным и подлежит замене.

Автомобилистам не обязательно знать насколько упало щелочное число, достаточно содержать автомобиль в исправном состоянии и проводить регламентную замену смазочных материалов. В диагностической лаборатории возможно установить число щелочных и кислых компонентов на единицу массы моторного масла, но подобный дорогостоящий тест не имеет никакого практического смысла, т.к. дешевле произвести замену. Замену можно сделать и без использования специальной промывки, залив порцию обычного масла и проехав небольшое расстояние. Содержащиеся в нем «свежие» присадки нейтрализуют остатки старых кислотных продуктов оставшиеся в масляной системе двигателя, и после этого можно будет залить уже новую рабочую порцию смазки.

В заключение, можно добавить, что заливая в автомобиль масло с неизвестными характеристиками владельцы рискуют необратимо вывести из строя двигатель.

Разработка присадок и проведение испытаний, это наукоемкий процесс, требующий наличия соответствующей материально-технической базы и испытательной лаборатории. В домашних условиях точно повысить щелочность до нужного уровня простым добавлением KOH невозможно — технология ввода присадочных компонентов применяемая в промышленности сложная и многоступенчатая, воспроизвести ее в быту невозможно.

Автоэксперт: Сергей Поздняков

Вам будет интересно

maslogsm.ru

Информация к размышлению. Масла. — DRIVE2

Функции моторных масел

Моторные масла работают в исключительно тяжелых условиях. Другим смазочным материалам, применяемым в автомобилях — трансмиссионным маслам и пластичным смазкам, — несравненно легче выполнять свои функции, не теряя нужных свойств, так как они работают в среде относительно однородной, с более-менее постоянными температурой, давлением и нагрузками. У моторных же режим "рваный" — одна и та же порция масла длительное время подвергается ежесекундным перепадам тепловых и механических нагрузок, поскольку условия смазки различных узлов двигателя далеко не одинаковы.

Кроме того, моторное масло подвергается химическому воздействию — кислорода воздуха, других газов, продуктов неполного сгорания топлива, да и самого топлива, которое неминуемо попадает в масло, хотя и в очень малых количествах.

В таких, мягко говоря, некомфортных условиях моторное масло должно в течение длительного времени выполнять возложенные на него функции. А именно:
— уменьшать трение между соприкасающимися деталями, снижая износ и предотвращая задиры трущихся частей;
— уплотнять зазоры, в первую очередь, между деталями цилиндро-поршневой группы, не допуская или сводя к минимуму прорыв газов из камеры сгорания;
— защищать детали от коррозии;
— отводить тепло от трущихся поверхностей;
— выносить продукты износа из зоны трения, тем самым замедляя обpазование отложений на повеpхности частей двигателя.

Некоторые основные характеристики масел

Вязкость — это одна из важнейших характеристик масел. Моторные масла, как и большинство смазочных материалов, изменяют вязкость в зависимости от своей температуры. Чем ниже температура, тем больше вязкость и наоборот. Чтобы обеспечить холодный пуск двигателя (проворачивание коленвала стартером и прокачивание масла по системе смазки) при низких температурах, вязкость не должна быть очень большой. При высоких температурах, наоборот, масло не должно иметь очень малую вязкость, чтобы создавать прочную масляную пленку между трущимися деталями и необходимое давление в системе.

Индекс вязкости — показатель, который характеризует зависимость вязкости масла от изменения температуры. Это безразмерная величина, т.е. не измеряется в каких-либо единицах– это просто число. Чем выше индекс вязкости моторного масла, тем в более широком температурном диапазоне масло обеспечивает работоспособность двигателя. Для минеральных масел без вязкостных присадок индекс вязкости составляет 85-100, масла с вязкостными присадками и синтетические масла-компоненты могут иметь индекс вязкости 120-150. У маловязких глубокоочищенных масел индекс вязкости может достигать 200.

Температура вспышки. Этот показатель характеризует наличие в масле легкокипящих фракций, и, соответственно, связан с испаряемостью масла в процессе эксплуатации. У хороших масел температура вспышки должна быть выше 225°С. У недостаточно качественных масел маловязкие фракции быстро испаряются и выгорают, ведя к высокому расходу масла и ухудшению его низкотемпературных свойств.

Температура застывания — это температура, при которой масло практически полностью теряет текучесть (подвижность). Температура застывания характеризует момент резкого увеличения вязкости при снижении температуры, или кристаллизации парафина вместе с повышением вязкости в такой степени, что масло становится твердым.

Щелочное число (TBN). Показывает общую щелочность масла, включая вносимую моющими и диспергирующими присадками, которые обладают щелочными свойствами. TBN характеризует способность масла нейтрализовывать вредные кислоты, поступающие в него в процессе работы двигателя и противодействовать отложениям. Чем ниже TBN, тем меньше активных присадок осталось в масле. TBN большинства масел для бензиновых двигателей обычно имеет значения в пределах 8-9 единиц, а для дизельных двигателей около 11-14. При работе моторного масла общее щелочное число неизбежно снижается, нейтрализующие присадки срабатываются. Значительное падение числа TBN приводит к кислотной коррозии, а также загрязнению внутренних частей двигателя.

Кислотное число (TAN). Кислотное число является показателем, характеризующим наличие в моторных маслах продуктов окисления. Чем меньше его абсолютное значение, тем лучше условия работы масла в двигателе и тем больше его остаточный ресурс. Повышение числа TAN служит показателем окисления масла, вызванного длительным временем использования и/или рабочей температурой. Общее кислотное число определяется для анализа состояния моторных масел, как показателя степени окисления масла и накопления кислых продуктов сгорания топлива.

Базовые масла

Моторное масло состоит из основы (базового масла) и присадок. Свойства масла определяются прежде всего химическим составом основы, присадки же предназначены для корректировки и улучшения этих характеристик. С помощью присадок можно значительно повысить эксплуатационные свойства моторных масел, даже изготовленных из не самых лучших базовых масел. Но при длительной эксплуатации и особенно при высоких нагрузках присадки разрушаются, и конечное качество моторного масла, проработавшего в двигателе более половины положенного срока, определяется качеством базового масла. Основы масла бывают минеральные (т.е. полученные путём очистки соответствующей фракции нефти) и синтетические (т.е. полученым путём каталитического синтеза из газов). Комбинация минеральных и синтетических основ, при условии не менее 25 % синтетического базового масла, называется полусинтетической базой.
Условные эксплуатационные характеристики (по возрастанию качества), в %
(минеральное базовое масло принято за 100 %)

Минеральное, обычного качества- 100 %
Гидрокрекинговое, улучшенное минеральное- 200 %
Синтетическое, полиальфаолефиновое- 300 %
Синтетическое, эстеровое- 500 %

Итак, гидрокрекинговые масла — это продукты перегонки и глубокой очистки нефти. Гидрокрекинг отбрасывает все «ненужное», ну а если захватывается что-то «полезное», необходимые свойства придаются с помощью присадок. Но четко отфильтровать ненужные примеси сложно — поэтому имеет место большее нагарообразование и «содействие» коррозии у гидрокрекинговых масел по сравнению «синтетикой». Гидрокрекинговое масло получается близким по качеству к «синтетике», но быстрее стареет, теряет свои свойства. Зато они обладают высоким индексом вязкости, противоокислительной стойкостью и стойкостью к деформациям сдвига, а от износа могут защищать даже лучше, чем синтетические. С другой стороны, «синтетика» более однородна в смысле линейности углеводородных цепей, что дает преимущества, например, в температуре замерзания. Есть еще один нюанс. Гидрокрекинг — процесс каталитический, как, впрочем, и синтез. Но если первый идет, например, на никеле, то второй — на углероде. Понятно, что углерод в этом смысле лучше, так масло будет избавлено от нежелательных примесей соединений катализаторов.

Самое интересное, что подавляющее большинство моторных масел, позиционируемых как полусинтетические, и даже полностью синтетические, являются ни чем иным, как гидрокрекинговыми маслами. Это общая тенденция крупнейших производителей масел. Программа BP (кроме Visco 7000), Shell (кроме 0W-40), частично Castrol, Mobil, Esso, Chevron, Fuchs построена на гидрокрекинге. Все масла южно-корейской фирмы ZIC- это только гидрокрекинг.

Полусинтетика – это смесь минеральных и синтетических базовых масел, и может содержать в своем составе от 20 до 40 процентов «синтетики». Специальных требований к производителям полусинтетических смазочных материалов в отношении того, какое количество синтетического базового масла (синтетического компонента) должно быть в готовом моторном масле — нет. Также нет никаких предписаний, какой синтетический компонент (базовое масло группы III или группы IV) использовать при изготовлении полусинтетического смазочного материала. По своим характеристикам эти масла занимают промежуточное положение между минеральными и синтетическими маслами, т.е. их свойства лучше обычных минеральных масел, но хуже синтетических. По цене же эти масла значительно дешевле синтетических.

Синтетические масла обладают исключительно удачными вязкостно-температурными характеристиками. Это, во-первых, гораздо более низкая, чем у минеральных, температура застывания (-50°С, -60°C) и очень высокий индекс вязкости, что существенно облегчает запуск двигателя в морозную погоду. Во-вторых, они имеют более высокую вязкость при рабочих температурах свыше 100°C — благодаря этому масляная пленка, разделяющая поверхности трения, не разрушается в экстремальных тепловых режимах. К прочим достоинствам синтетических масел можно отнести повышенную стойкость к деформациям сдвига (благодаря однородности структруры), высокую термоокислительную стабильность, то есть малую склонность к образованию нагаров и лаков (лаками называют откладывающиеся на горячих поверхностях прозрачные, очень прочные, практически ничем не растворимые пленки, состоящие из продуктов окисления), а также небольшие по сравнению с минеральными маслами испаряемость и расход на угар. Немаловажно и то, что синтетика требует введения минимального количества загущающих присадок, а особо высококлассные ее сорта не требуют таких присадок вообще, следовательно, эти масла очень стойкие — ведь разрушаются в первую очередь именно присадки. Все эти свойства синтетических масел способствуют снижению общих механических потерь в двигателе и уменьшению износа деталей. Кроме того, их ресурс превышает ресурс минеральных в 5 и более раз. Основным фактором, ограничивающим применение синтетических масел, является их высокая стоимость. Они в 3-5 раз дороже минеральных.

Присадки

При современном уровне развития двигателестроения использование масла без присадок практически невозможно, т.к. невозможно создание масел, которые обеспечили бы эффективную защиту двигателя и одновременно не разрушались в течение длительного времени. Все современные моторные масла содержат в своем составе пакет (набор) присадок, содержание которых суммарно может достигать 20%.

Присадки можно разделить на несколько типов:

Вязкостно-загущающие присадки
Моющие присадки (детергенты и дисперсанты)
Противоизносные присадки
Ингибиторы окисления (антиокислительные присадки)
Ингибиторы коррозии и ржавления
Антипенные присадки
Модификаторы трения
Депрессорные присадки.

Классификация масел

Для того чтобы двигатель отработал расчетный ресурс, необходимо соблюдать несколько простых правил:

При выборе моторного масла руководствоваться перечнем масел, допущенных к применению производителем автомобиля.
Замену масла производить в сроки, установленные производителем. Интервал замены масла необходимо уменьшить при эксплуатации автомобиля в условиях, когда движение осуществляется преимущественно на низших передачах (в городе, по бездорожью), так как двигатель совершает большее количество оборотов на тысячу километров пробега, чем при движении по трассе. Для автомобилей со значительным пробегом замену масла также нужно производить чаще, потому что условия его работы в изношенных двигателях более жесткие (прорыв раскаленных газов в картер из-за увеличенных зазоров между поршнями и цилиндрами и т. д).
Недопустимо смешивать минеральное масло с синтетическим или полусинтетическим из-за разной растворимости присадок в минеральной и синтетической основах. Результатом смешивания может быть выпадение присадок в нерастворимый осадок. Доливать следует тот же сорт масла, который залит в двигатель. Масла разных производителей содержат различные пакеты присадок, которые могут быть несовместимы.
Если в процессе эксплуатации масло заменялось своевременно и имело соответствующее качество, промывку двигателя проводить не надо. Если неизвестно, какое масло заливал прежний владелец автомобиля, перед заменой необходимо промыть систему смазки специально предназначенным для этого промывочным маслом. В противном случае свежее высококачественное масло может смыть большое количество отложений, что приведет к быстрому засорению фильтра системы смазки.
Добавление в моторное масло различных препаратов автохимии может улучшить одни его свойства и резко ухудшить другие, что неблагоприятно скажется на состоянии двигателя. Это связано с тем, что в качественном масле пакет присадок точно сбалансирован, а добавление в него какого-либо препарата, как правило, нарушает этот баланс.
В непрогретом до рабочей температуры масле щелочные присадки не успевают нейтрализовать кислоты, образующиеся из продуктов неполного сгорания топлива, соответственно происходит усиленный коррозионный износ поршней, их колец и цилиндров. Под нагрузкой (при движении автомобиля) двигатель прогревается быстрее. Поэтому в холодное время его прогрев “на месте” следует производить не более 3 — 5 мин.

Классификация моторных масел по вязкости SAE
В настоящее время общепризнанной международной системой классификации моторных масел по вязкости является SAE J300, разработанная Обществом Автомобильных Инженеров США (Society of Automotive Engineers). Вязкость масла по этой системе выражается в условных единицах — степенях вязкости. Чем больше число, входящее в обозначение класса SAE, тем выше вязкость масла.

Спецификация описывает три ряда вязкости масел: зимние, летние и всесезонные. Но, прежде, чем их рассмотреть, немного теории. Температурный диапазон моторного масла в основном определяется двумя его характеристиками: кинематической и динамической вязкостью. Кинематическая вязкость измеряется в капиллярном вискозиметре и показывает, насколько легко масло течет при данной температуре под действием силы тяжести в тонкой капиллярной трубке. Динамическая вязкость измеряется в более сложных установках — ротационных вискозиметрах. Она показывает насколько меняется вязкость масла при изменении скорости перемещения смазываемых деталей относительно друг друга. С увеличением скорости относительного перемещения смазываемых деталей вязкость снижается, а с уменьшением — возрастает.
Ряд зимних масел: SAE 0W, 5W, 10W, 15W, 20W, 25W — обозначаются цифрой и буквой "W" (Winter-Зима). Для зимних классов установлены два максимальных значения низкотемпературной динамической вязкости и нижний предел кинематической вязкости при 100°С.

К низкотемпературным параметрам относятся:
Проворачиваемость- показывает динамическую вязкость моторного масла и температуру, при которой масло остается достаточно жидким, чтобы было возможно запустить двигатель.
Прокачиваемость — это динамическая вязкость масла, при которой масло сможет прокачаться по системе смазки и двигатель не будет работать в режиме сухого трения. Температура прокачиваемости ниже температуры проворачиваемости на 5 градусов.

Высокотемпературные свойства зимних масел характеризует минимальная кинематическая вязкость при 100°С — показатель, определяющий минимальную вязкость моторного масла при прогретом двигателе.

Ряд летних масел: SAE 20, 30, 40, 50, 60 — обозначаются цифрой без буквенного обозначения. Основные свойства летнего ряда масел определяется по:

минимальной и максимальной кинематическим вязкостям при 100°С — показатель, определяющий минимальную и максимальную вязкость моторного масла при прогретом двигателе.
минимальной вязкости при 150°С и скорости сдвига 106 с-1. Градиент скорости сдвига – это отношение скорости движения одной поверхности трения относительно другой к величине зазора между ними, заполненного маслом. С увеличением градиента скорости сдвига снижается вязкость масла, но она снова возрастает, когда скорость сдвига уменьшается.

Ряд всесезонных масел: SAE 0W-20, 0W-30, 0W-40, 0W-50, 0W-60, 5W-20, 5W-30, 5W-40, 5W-50, 5W-60, 10W-20, 10W-30, 10W-40, 10W-50, 10W-60, 15W-30, 15W-40, 15W-50, 15W-60, 20W-30, 20W-40, 20W-50, 20W-60. Обозначение состоит из комбинации зимнего и летнего ряда, разделенных тире. Всесезонные масла должны удовлетворять одновременно критериям и зимнего, и летнего масла. Чем меньше цифра, стоящая перед буквой W, тем меньше вязкость масла при низкой температуре, легче холодный пуск двигателя стартером и лучше прокачиваемость масла по смазочной системе. Чем больше цифра, стоящая после буквы W, тем больше вязкость масла при высокой температуре и надежнее смазывание двигателя при жаркой погоде.

Таким образом, класс SAE сообщает потребителю диапазон температуры окружающей среды, в котором масло обеспечит:

проворачивание двигателя стартером (для зимних и всесезонных масел)
прокачивание масла масляным насосом по смазочной системе двигателя под давлением при холодном пуске в режиме, не допускающем сухого трения в узлах трения (для зимних и всесезонных масел)
надежное смазывание летом при длительной работе в максимальном скоростном и нагрузочном режиме (для летних и всесезонных масел)

Маркировка

Думаю этот материал будет интересен тем, кто имеет слабые представления о маслах =)

Текст взят с личной страницы spri07

www.drive2.ru