Когда появилась гидромеханическая трансмиссия – Все для вашей иномарки 54 RUS – Трансмиссия с гидромеханической коробкой передач | Устройство, работа и эксплуатация АКПП

Содержание

Гидромеханическая коробка передач

Традиционное устройство автомобиля включает в себя в качестве обязательного элемента его конструкции такие узлы, как сцепление и КПП. Однако меняющийся стиль и образ современной жизни, с уклоном в сторону обеспечения все большего комфорта, приводит к изменению этих традиционных узлов машины. Им на смену зачастую приходит гидромеханическая трансмиссия.

Трансмиссия? А это что такое и зачем?

Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так. Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП. Педаль сцепления просто-напросто отсутствует, а переключения выполняются автоматически.

Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:

  • необходимости отключения от двигателя трансмиссии при переключении передач;
  • изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.

В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач. Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач.

Об устройстве гидромеханической коробки

Говоря про устройство применяемой в составе легкового автомобиля гидромеханической коробки передач, надо отметить ее основные узлы:

  1. гидротрансформатор;
  2. управляющие механизмы;
  3. механическая коробка передач.

Про гидротрансформатор

Основой гидромеханического автомата является гидротрансформатор. Фактически в гидромеханической АКПП он выполняет роль, аналогичную сцеплению в обычном автомобиле – передает момент от двигателя к коробке.


Как видно из рисунка, устройство гидротрансформатора довольно простое и включает в себя три колеса специальной формы:

  • насосное, осуществляющее связь между двигателем и гидротрансформатором;
  • турбинное, выполняющее связь с валом (первичным) коробки передач;
  • реакторное, предназначенное для усиления крутящего момента.

Все эти турбины закрыты специальным корпусом и на три четверти погружены в масло, заполняющее внутренний объем. Гидромеханический привод работает таким образом – насосное колесо, на которое поступает вращающий момент от двигателя, вращаясь, направляет на турбинное колесо поток масла, которое им раскручивается и предает усилие на вал коробки передач.

Происходит циркуляция масла по сложной траектории – с внешней части насосного кольца на внешнюю часть турбинного, а затем через центр устройства обратно к насосному. Следствием такого движения является гидромеханическая передача момента к коробке передач от мотора.

Такой гидромеханический привод обладает особенностью – из-за присутствия третьего, реакторного колеса, возможно усиление передаваемого момента. Происходит это благодаря его расположению в центре гидротрансформатора.

Когда осуществляется гидромеханическая передача момента, поток масла от турбинного колеса направляется к центру устройства и затем возвращается обратно к насосному. Однако на его пути расположено реакторное колесо, и поток, оказывая на него давление, вызывает с его стороны ответную реакцию, которая, воздействуя на турбину, усиливает момент, переданный от насосного колеса.

Такое дополнительное воздействие, возникающее, когда происходит гидромеханическая передача мощности от мотора, приводит к тому, что она увеличивается. Величина усиления зависит от разности скоростей межу колесами гидротрансформатора, чем она больше, тем более значительным оно будет. Это особенно полезно при начале движения, когда выполняется гидромеханическая передача мощности от двигателя, работающего на холостом ходу, к неподвижной трансмиссии.

Очень полезным фактом являет то, что гидравлический привод автоматически устанавливает нужное передаточное число между колесами и двигателем, благодаря изменению величины напора жидкости при ее передаче между напорным и турбинным дисками.

Однако диапазон такого изменения достаточно небольшой, и при этом отсутствует возможность, используя гидромеханический привод, разорвать связь между трансмиссией и мотором, поэтому гидротрансформатор работает последовательно с планетарной коробкой, позволяющей устранить отмеченные недостатки.

Про планетарную коробку

В гидромеханической АКПП чаще всего используется планетарный механизм, устройство которого понятно из приведённого ниже рисунка.

В самом простейшем варианте крутящий момент поступает на солнечную шестерню 6, с которой шестерни-сателлиты 3 находятся в постоянном зацеплении, они свободно вращаются на своих осях. На них установлено водило 4, соединенное с валом 5, сателлиты 3 постоянно находятся в зацеплении с шестерней 2, на внутренней поверхности которой имеются зубья.

Когда коронная шестерня 2 заторможена, момент через водило 4 поступает на ведомый вал, а когда шестерня расторможена, то сателлиты передают момент на нее, а ведомый вал остается неподвижным.
В АКПП используются фрикционные муфты сцепления и ленточные тормоза, а управление ими осуществляется с помощью гидромеханической системы, представляющей собой различные каналы, пружины и насос для создания давления масла.

Достоинства и недостатки гидромеханической коробки

В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.

Достоинством такой АКПП считаются:

  1. исключение ручного переключения передач;
  2. обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.

Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор.

По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.


Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.

Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.

znanieavto.ru

История АКПП: кто придумал коробку автомат

Идея создания автоматической коробки передач появилась практически одновременно с появлением автомобиля, оснащенного МКПП. При этом автопроизводители, изобретатели и энтузиасты из разных стран начали работать над агрегатом.

В результате уже в самом начале 20-го века стали появляться опытные образцы, которые имели трансмиссию, похожую на современный автомат. В этой статье мы поговорим о том, как создавалась и когда появилась первая АКПП, познакомимся с историей автоматической трансмиссии, а также ответим на вопрос, кто изобрел коробку автомат. 

Читайте в этой статье

Кто изобрел коробку автомат и когда появилась первая АКПП

Как известно, трансмиссия является вторым по важности агрегатом после ДВС. При этом появление АКПП стало настоящим прорывом, так как благодаря такой коробке передач значительно повышается не только комфорт, но и безопасность при управлении автомобилем. 

Такая КПП является системой, состоящей из гидротрансформатора (ГДТ) и планетарной коробки. Принципы и основы планетарной передачи  были известны еще в средние века, а гидротрансформатор создал немец Герман Феттингер в начале 20-го века.

Первым объединил коробку и ГДТ американский изобретатель Азатур Сарафян, более известный под именем Оскар Бэнкер. Именно он запатентовал автоматическую коробку передач в 1935г., хотя для получения патента больше 7 лет отстаивал свое право в борьбе с крупными автопроизводителями.

Родился Сарафян в 1895 году. Его семья оказалась в США в результате печально известного Геноцида армян, который имел место быть в Османской империи. Обосновавшись в Чикаго, Асатур Сарафян сменил свое имя, став Оскаром Бэнкером.

Талантливый изобретатель создал различные полезные устройства, среди которых можно выделить несколько незаменимых сегодня решений (например, шприц-пистолет для смазки), однако главным его достижением является изобретение первой автоматической гидромеханической коробки передач. В свою очередь, General Motors (GM), которая ранее устанавливала полуавтоматическую коробку передач на свои модели, первой перешла на АКПП.

История создания автоматической коробки передач

Итак, важнейшим элементом, благодаря которому стало возможным появление полноценной АКПП, является гидротрансформатор.

Изначально ГДТ появился в судостроении. Причина – вместо низкооборотистых паровых двигателей ближе к концу 19-го века появились более мощные паровые турбины. Такие турбины соединялись с винтом напрямую, что неизбежно привело к возникновению целого ряда технических проблем.

Решением оказалось изобретение Г. Феттингера, который предложил гидравлическую машину, где лопастные колеса гидродинамической передачи, насос, турбина и реактор были объединены в одном корпусе.

Такой гидротрансформатор был запатентован в 1902 году и имел большое количество преимуществ по сравнению с другими механизмами и устройствами, которые могли бы преобразовать крутящий момент от двигателя.

ГДТ Феттингера минимизировал потери полезной энергии, КПД устройства оказался высоким. На практике, указанный гидродинамический трансформатор, в среднем, обеспечивал на судах КПД около 90% и даже больше.

Вернемся к коробкам передач на автомобилях. В самом начале 20-го века (1904 год) изобретатели братья Стартевенты из города Бостон, США, представили раннюю версию автоматической коробки.

Данная КПП на две передачи фактически являлась усовершенствованной МКПП, где переключения могли быть автоматическими. Другими словами, это был прототип коробки- робот. Однако в те годы по ряду причин серийное производство оказалось невозможным, от проекта отказались.

Следующими автоматическую коробку начали ставить в компании Ford. Легендарная модель Model-T была оснащена планетарной коробкой передач, которая получила две скорости для движения вперед, а также заднюю передачу. Управление КПП было реализовано при помощи педалей.

Далее появилась коробка от компании Reo на моделях General Motors. Такая трансмиссия вполне может считаться первой РКПП, так как это была механическая коробка с автоматизированным сцеплением. Немного позже стала использоваться и планетарная система передач, еще больше приблизив момент появления полноценных гидромеханических автоматов.

Планетарный механизм (планетарная передача) наилучшим образом подходит для АКПП. Чтобы управлять передаточным числом, а также направлением вращения выходного вала, выполняется торможение отдельных частей планетарной передачи. При этом  для решения задачи можно использовать относительно небольшие и постоянные усилия.

Другими словами, речь идет об исполнительных механизмах АКПП (фрикционы, ленточный тормоз). Также в те годы реализовать эффективное управление данными механизмами не составляло труда. Еще необходимость выровнять скорости отдельных элементов АКПП отсутствовала, так как все шестерни планетарной передачи находятся в постоянном зацеплении.

Если сравнить такую схему с попытками автоматизировать работу механической коробки, в то время это было крайне сложной задачей. Основной проблемой являлось то, что в те годы не было эффективных, быстрых и надежных сервомеханизмов (сервоприводов).

Рекомендуем также прочитать статью о том, что такое гидротрансформатор АКПП. Из этой статьи вы узнаете об устройстве, принципах работы и особенностях гидротрансформатора автоматических коробок передач.

Указанные механизмы необходимы для  того, чтобы перемещать шестерни или муфты включения для введения в зацепление. Сервомеханизмы также должны обеспечить большое усилие и рабочий ход, особенно если сравнивать усилие для сжатия пакета фрикционов или затяжки ленточного тормоза АКПП.

Качественное решение было найдено только ближе к середине XX века, а массовой роботизированная механика стала только за последние 10-15 лет (например, АМТ или преселективная коробка DSG).

Дальнейшее развитие коробки автомат: эволюция гидромеханической АКПП

Перед тем, как переходить к АКПП, нужно упомянуть коробку передач Уильсона. Водитель выбирал передачу при помощи подрулевого переключателя, а включение производилось посредством нажатия на отдельную педаль.

Такая трансмиссия была прообразом преселективной коробки передач, так как водитель заранее выбирал передачу, при этом ее включение осуществлялось только после нажатия на педаль, которая стояла на месте педали сцепления МКПП.

Данное решение облегчало процесс управления ТС, переключения передач требовали минимум времени по сравнению с МКПП, которые в те годы не имели синхронизаторов. При этом значимая роль коробки Уильсона заключается в том, что это первая КПП с переключателем режимов, которая напоминает современные аналоги (режимы P-R-N-D).

Вернемся к АКПП. Итак, полностью автоматическую гидромеханическую коробку передач Hydra-Matic представила General Motors в 1940 году. Данную КПП ставили на модели Cadillac, Pontiac и т.д.

Такая трансмиссия представляла собой гидротрансформатор (гидромуфту) и планетарную коробку передач с автоматическим гидравлическим управлением. Управление было реализовано с учетом скорости движения автомобиля, а также положения дроссельной заслонки.

Коробка Hydra-Matic ставилась как на модели GM, так и на Bentley, Rolls-Royce, Lincoln и т.д. В начале 50-х специалисты Mercedes-Benz взяли данную коробку за основу и разработали собственный аналог, который работал по схожему принципу, однако имел целый ряд отличий в плане конструкции.

Ближе к середине 60-х автоматические гидромеханические коробки передач достигли пика своей популярности. Также появление синтетических смазок на рынке ГСМ позволило удешевить их производство и обслуживание, повысить надежность агрегата. Уже в те годы АКПП не сильно отличались от современных версий.

В 80-х стала прослеживаться тенденция к постоянному увеличению числа передач. В автоматических коробках сначала появилась четвертая передача, то есть повышенная. Одновременно стала использоваться и функция блокировки гидротрансформатора.

Также четырехступенчатые автоматы стали управляться при помощи ЭБУ, что дало возможность избавиться от многих механических элементов управления, заменив их соленоидами.

Например, первыми внедрение электронной системы управления автоматической коробкой передач реализовали специалисты Toyota в 1983 г. Далее Ford в 1987 году также перешел на использование электроники для управления повышающей передачей и блокировочной муфтой ГДТ.

Кстати, сегодня АКПП продолжает эволюционировать. С учетом жестких экологических стандартов и роста цен на топливо производители стремятся повысить КПД трансмиссии, добиться топливной экономичности.

Для этого увеличивается общее количество передач, скорость переключений стала очень высокой. Сегодня можно встретить АКПП, которые имеют 5, 6 и более «скоростей». Основная задача – успешно конкурировать с преселективными роботизированными коробками типа DSG.

Параллельно происходит и постоянное усовершенствование блоков управления АКПП, а также программного обеспечения. Изначально это были системы, которые только определяли момент переключения передачи и отвечали за качество включений.

В дальнейшем в блоки стали «зашивать» программы, которые способны подстраиваться под манеру езды, динамично меняя алгоритмы переключения передач (например, адаптивные АКПП с режимами эконом, спорт).

Позже появилась и возможность ручного управления АКПП (например, Tiptronic), когда водитель может самостоятельно определять моменты переключения передач подобно механической коробке. Дополнительно коробка автомат получила расширенные возможности в плане самодиагностики, контроля температуры трансмиссионной жидкости и т.д.

 

Читайте также

krutimotor.ru

Гидромеханическая трансмиссия автомобиля, назначение и устройство

Заголовок

Назначение и устройство гидромеханической трансмиссии легкового автомобиля

Неотъемлемыми элементами конструкции классического устройства автомобиля служат сцепление с КПП. Но меняющийся образ жизни диктует создание оптимального комфорта для водителей. Это ведет к изменению стандартных узлов автомашины. Их все чаще заменяет комбинированная гидромеханическая трансмиссия, в состав которой входит как механическая, так и гидравлическая трансмиссии. В устройствах этого типа передаточное число, крутящий момент меняются постепенно и плавно.

Трансмиссия

 Роль трансмиссии в машине

Для транспортного средства трансмиссией является все, что создает подачу крутящего момента от двигателя к колесам, например, КПП со сцеплением, как это в классических автомобилях. Сегодня в машинах их сменяют на АККП, когда управление облегчается, сцепление не предусмотрено, а переключения производятся автоматически.

Выполнение этих процессов обеспечивает гидромеханическая коробка передач. Для понимания процесса надо знать о двух главных моментах, возникающих при управлении автомобилем:

  • При переключении скоростей трансмиссия отключается от двигателя;
  • После смены дорожных условий выполняется изменение величины крутящего момента.

Это происходит после того, как выжато сцепление и переключена скорость коробкой передач (в обычных машинах). В транспортных средствах с АКПП эти процессы в большинстве случаев производит гидромеханическая коробка передач.

Механизм гидромеханической коробки

В устройство АКПП, применяемом в легковых автомобилях, входят:

  1. Гидротрансформатор;
  2. Управляющие составляющие;
  3. Механическая коробка скоростей.

 Гидротрансформатор

Гидротрансформатор

В современный автомат входит гидротрансформатор, выполняющий в автомобиле с КПП (подает вращающий момент) функции сцепления. Благодаря гидротрансформатору транспортное средство плавно трогается. Снижение динамических нагрузок в трансмиссии приводит к повышению долговечности двигателя, а также остальных механизмов трансмиссии. Уменьшение количества переключений передач уменьшает утомляемость водителя.

Применение гидротрансформатора значительно увеличивает проходимость автомобиля по песку и снегу. Он создает устойчивую силу тяги с очень маленькой скоростью вращения на ведущих колесах, чем увеличивается их сцепление с поверхностью дорожного покрытия. Получается, что использование автоматических трансмиссий рекомендуется на внедорожниках. Гидротрансформатор имеет достаточно несложное устройство и объединяет три колеса:

  • Двигатель с гидротрансформатором связывает насосное;
  • Обеспечивает связь с первичным валом турбинное;
  • Усиливает крутящий момент реакторное.

Турбины на 3/4 помещены в масло и защищены специальным корпусом. Рабочий процесс гидромеханического привода основывается на том, что вращающий момент направляется от двигателя к насосному колесу, к турбинному колесу подается поток масла. Оно раскручивает колесо, и усилие предается на вал коробки скоростей. Весь процесс циркуляции масла проходит по особой траектории: с внешней стороны насосного кольца направляется на турбинное, а далее назад через центр механизма идет к насосному.

Турбина

Гидротрансформатор автоматически меняет крутящий момент по мере нагрузки, далее он передается к механической коробке, и передачи переключаются фрикционными устройствами. Гидравлический привод определяет достаточное передаточное число, изменяя напор жидкости для ее циркулирования между напорным диском и турбинным. Свою работу гидротрансформатор выполняет непосредственно с планетарной коробкой.

Планетарная коробка

В гидромеханической АКПП чаще применяется планетарный механизм. При его простейшем устройстве крутящий момент подается к солнечной шестерне. С нею постоянно сцеплены свободно вращающиеся шестерни-сателлиты. На них предусмотрено водило, связанное с валом.

Если коронная шестерня находится в заторможенном положении, то крутящий момент через водило направляется на ведомый вал. Если шестерня расторможена, тогда сателлиты подают на нее крутящий момент. Ведомый вал при этом неподвижен.

 Достоинства и недостатки автоматической коробки

Плюсы АКПП:

  1. Отсутствие переключения передач вручную;
  2. Осуществление равномерной подачи мощности.

Автомобили автоматическим переключением скоростей отличаются особой плавностью хода. Когда водителю нет необходимости переключаться вручную, то облегчается процесс вождения транспортного средства.
Недостатками считается более сложная конструкция трансмиссий и их большая масса. К недостаткам относится более низкий КПД, снижающий топливную экономичность автомашины.
Это простейший вариант гидромеханической трансмиссии, а сегодня на легковые автомобили устанавливаются более совершенные модели.

Похожие статьи:

autodont.ru

Гидромеханическая Коробка Передач Принцип Работы. Автобазар. 1km-auto

гидромеханическая коробка передач принцип работы

Принцип работы гидромеханической кпп

Основной причиной неудобств при вождении автомобиля с механической ступенчатой коробкой передач является то, что водитель вынужден постоянно нажимать педаль сцепления во время переключения рычага с одной передачи на другую. Такой способ вождения требует не только приложения значительной физической силы, но и доставляет некоторые неудобства, ведь вождение в современных городских условиях заставляет автолюбителей постоянно делать мелкие остановки во время движения, не говоря о пробках которые стали частью повседневности.

Для повышения комфорта при вождении и устранения таких неудобств в авто транспорте все чаще прибегают к использованию гидромеханической кпп. Они одновременно выполняют две функции: первая – сцепления, вторая -коробки переключения передач с использованием автоматического или полуавтоматического типа переключения. При использовании коробки передач гидромеханического типа управление во время движения автомобиля осуществляется непосредственно педалью подачи топлива, реже при помощи педали тормоза.

В состав гидромеханической кпп входит механическая коробка передач и гидротрансформатор. Причем принцип работы механической коробки передач может быть разный: двухвальный, трехтрехвальный, многовальный, а в некоторых случаях планетарной.

Принцип работы гидромеханической кпп с использованием вальных коробок передач главным образом применяются в грузовых автомобилях и автобусах. В них для переключения передач используются фриконы (многодисковые муфты), работающие в масле, в редких случаях – для включения первой передачи и заднего хода применяют зубчатую муфту. Таким образом, переключение передач фрикционами осуществляется вращением коленчатого вала двигателя без снижения скорости – без разрыва мощности и крутящего момента.

На сегодняшний день самое широкое распространение получили гидромеханические и планетарные механические коробки передач, применяемые в авто транспорте.

Основными преимуществами такого типа коробок передач является компактность конструкции, больший срок службы и меньшие металлоемкость и шумность. Однако стоит отметить и недостатки, к которым относят сложность конструкции, высокая цена, и что самое неприятное пониженный КПД.

Принцип работы кпп с гидромеханикой коробкой достаточно прост. В данном типе коробки переключение передач производится с помощью фрикционных муфт и ленточных тормозных механизмов. Причем при включении одной передачи часть муфт, а также ленточных тормозных механизмов, как бы пробуксовывает, что является одной из причин снижения общего КПД коробки.

Принцип работы гидротрансформатора, это некий гидравлический механизм, располагающийся между двигателем и механической коробкой, и состоящий из трех колес с лопатками: колеса реактора, турбинного и насосного колеса.

При работе двигателя колесо насоса вращается одновременно с маховиком двигателя. Масло поступает в наружную часть насосного колеса под воздействием центробежной силы, действуя на лопатки уже турбинного колеса, приводя его во вращение. Масло из турбинного колеса поступает в реактор, задачей которого становится обеспечение плавной и безударной транспортировки жидкости в насосное колесо, при существенном изменение крутящего момента в сторону увеличения. Таким образом, циркуляция масла происходит по замкнутому кругу, передавая крутящий момент внутри гидротрансформатора.

Увеличение крутящего момента во время перехода от двигателя к первичному валу коробки-характерная особенность гидротрансформатора. Наибольшее значение крутящего момента на турбинном колесе достигается при движении автомобиля с места. В этом случае реактор абсолютно неподвижен, поскольку заторможен муфтой свободного хода. По мере разгона, в автомобиле увеличиваются скорости вращения турбинного и насосного колеса. В то время как муфта свободно расклинивается, реактор начинает вращение с нарастающей скоростью, оказывая при этом все меньшее влияние на передаваемый крутящий момент. При достижении реактором максимального значения скорости вращения гидротрансформатор прекращает изменять крутящий момент и переходит в состояние работы гидромуфты. Таким образом, одновременно происходит равномерно-плавный разгон автомобиля и осуществляется бесступенчатая смена крутящего момента.

В свою очередь планетарная коробка передач включает в себя непосредственно сами планетарные механизмы. В простейшем механизме планетарной коробки солнечная шестерня, закрепленная на ведущем вале, и находится в сцеплении с шестернями-сателлитами, свободно располагающимися на своих осях. На водиле закреплены оси сателлитов, соединяемые с ведомым валом, в свою очередь сами сателлиты располагаются в сцеплении с коронной шестерней с внутренними зубьями.

Переход крутящего момента с ведущего на ведомый вал происходит только при заторможенной коронной шестерне с использованием ленточного тормоза. В данном случае, во время вращения шестерни, сателлиты, перекатываясь по зубьям неподвижной шестерни, начинают вращение вокруг своих осей, за счет чего по средствам водило одновременно приходит в движение ведомый вал. Во время растормаживания шестерни сателлиты обеспечивают вращение шестерни, беспрепятственно перекатываясь по ней, в то время как вал будет оставаться неподвижным.

В состав гидромеханической кпп входят промежуточный, ведущий и ведомыйи валы с шестернями, многодисковые фрикционные сцепления (фрикционы), а также зубчатую муфту с приводом. К системе управления относят передний и задний гидронасосы, центробежный регулятор, который воздействующий на фрикционы, которые осуществляют переключение передач.

При нейтральном положении выключены все фрикционы, потому на активном работающем двигателе передача крутящего момента не происходит. При использовании I (понижающей) передачи автоматически включается фрикцион. Причем ведущая шестерня блокируется валом, а зубчатая муфта в положение переднего хода устанавливается вручную с использованием дистанционной системы управления. На I передаче крутящий момент предается от гидротрансформатора через фрикцион, муфту и шестерни на ведомый вал в коробке передач.

Во время разгона на I передаче скорость возрастает до оптимального значения для переключения на II передачу, в этот момент центробежный регулятор передает сигнал о включении или отключении фрикциона.

Автоматическая система управления обеспечивает включение II (прямой) передачи, при этом одновременно происходит передача крутящего момента от первичного вала на вторичный по средствам фрикциона, и скорость автомобиля начинает расти вплоть до значения, установленного диапазоном регулирования гидротрансформатором.

19-07-, 14:15 | Зинченко Владимир Александрович

Гидромеханическая трансмиссия – все ради комфорта

Традиционное устройство автомобиля включает в себя в качестве обязательного элемента его конструкции такие узлы, как сцепление и КПП. Однако меняющийся стиль и образ современной жизни, с уклоном в сторону обеспечения все большего комфорта, приводит к изменению этих традиционных узлов машины. Им на смену зачастую приходит гидромеханическая трансмиссия.

Трансмиссия? А это что такое и зачем?

Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так. Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП. Педаль сцепления просто-напросто отсутствует, а переключения выполняются автоматически.

Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:

  • необходимости отключения от двигателя трансмиссии при переключении передач
  • изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.

В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач. Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач .

Об устройстве гидромеханической коробки

Говоря про устройство применяемой в составе легкового автомобиля гидромеханической коробки передач, надо отметить ее основные узлы:

  1. гидротрансформатор
  2. управляющие механизмы
  3. механическая коробка передач.

Про гидротрансформатор

Основой гидромеханического автомата является гидротрансформатор. Фактически в гидромеханической АКПП он выполняет роль, аналогичную сцеплению в обычном автомобиле – передает момент от двигателя к коробке.

Как видно из рисунка, устройство гидротрансформатора довольно простое и включает в себя три колеса специальной формы:

  • насосное, осуществляющее связь между двигателем и гидротрансформатором
  • турбинное, выполняющее связь с валом (первичным) коробки передач
  • реакторное, предназначенное для усиления крутящего момента.

Все эти турбины закрыты специальным корпусом и на три четверти погружены в масло, заполняющее внутренний объем. Гидромеханический привод работает таким образом – насосное колесо, на которое поступает вращающий момент от двигателя, вращаясь, направляет на турбинное колесо поток масла, которое им раскручивается и предает усилие на вал коробки передач. Происходит циркуляция масла по сложной траектории – с внешней части насосного кольца на внешнюю часть турбинного, а затем через центр устройства обратно к насосному. Следствием такого движения является гидромеханическая передача момента к коробке передач от мотора.

Такой гидромеханический привод обладает особенностью – из-за присутствия третьего, реакторного колеса, возможно усиление передаваемого момента. Происходит это благодаря его расположению в центре гидротрансформатора. Когда осуществляется гидромеханическая передача момента, поток масла от турбинного колеса направляется к центру устройства и затем возвращается обратно к насосному. Однако на его пути расположено реакторное колесо, и поток, оказывая на него давление, вызывает с его стороны ответную реакцию, которая, воздействуя на турбину, усиливает момент, переданный от насосного колеса.

Такое дополнительное воздействие, возникающее, когда происходит гидромеханическая передача мощности от мотора, приводит к тому, что она увеличивается. Величина усиления зависит от разности скоростей межу колесами гидротрансформатора, чем она больше, тем более значительным оно будет. Это особенно полезно при начале движения, когда выполняется гидромеханическая передача мощности от двигателя, работающего на холостом ходу, к неподвижной трансмиссии.

Очень полезным фактом являет то, что гидравлический привод автоматически устанавливает нужное передаточное число между колесами и двигателем, благодаря изменению величины напора жидкости при ее передаче между напорным и турбинным дисками. Однако диапазон такого изменения достаточно небольшой, и при этом отсутствует возможность, используя гидромеханический привод, разорвать связь между трансмиссией и мотором, поэтому гидротрансформатор работает последовательно с планетарной коробкой, позволяющей устранить отмеченные недостатки.

Про планетарную коробку

В гидромеханической АКПП чаще всего используется планетарный механизм, устройство которого понятно из приведённого ниже рисунка.

В самом простейшем варианте крутящий момент поступает на солнечную шестерню 6, с которой шестерни-сателлиты 3 находятся в постоянном зацеплении, они свободно вращаются на своих осях. На них установлено водило 4, соединенное с валом 5, сателлиты 3 постоянно находятся в зацеплении с шестерней 2, на внутренней поверхности которой имеются зубья.

Когда коронная шестерня 2 заторможена, момент через водило 4 поступает на ведомый вал, а когда шестерня расторможена, то сателлиты передают момент на нее, а ведомый вал остается неподвижным.

В АКПП используются фрикционные муфты сцепления и ленточные тормоза, а управление ими осуществляется с помощью гидромеханической системы, представляющей собой различные каналы, пружины и насос для создания давления масла.

Достоинства и недостатки гидромеханической коробки

В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.

Достоинством такой АКПП считаются:

  1. исключение ручного переключения передач
  2. обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.

Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор. По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.

Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.

Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.

Как оцениваете статью?

Loading.

Гидромеханическая коробка передач

Гидромеханическая коробка передач состоит из:

  • гидротрансформатора
  • механической коробки передач

На легковых автомобилях наибольшее распространение получили гидромеханические коробки с плане­тарными механическими коробками. Их преимущества: компактность конструкции, меньшая металлоемкость и шумность, больший срок службы. К недостаткам относятся сложность, высокая стоимость, пониженный КПД. Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатка­ми:

  • насосного (ведущего)
  • турбинного (ведомого)
  • реактора

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки передач  и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. Гидротрансформатор:

а – общий вид б – схема 1 – маховик 2 – турбинное колесо 3 – насосное колесо 4 – реактор 5 – вал 6 – муфта

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор неподвижен  так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим  образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД  до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. Планетарный механизм:

1 – ведущий вал 2 – коронная шестерня 3 – сателлиты 4 – водило 5 – ведомый вал 6 – солнечная шестерня 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрикционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла.

Рис. Фрикционная муфта сцепления автоматической коробки передач:

1 – канал подачи рабочей жидкости 2 – поршень 3 – кожух муфты а – выключенное состояние б – включенное состояние

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для выключения сцепления применяется возвратная пружина. При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое. Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления. В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач. Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. Гидромеханическая коробка передач:

1 – гидротрансформатор 2,4 – тормозные механизмы 3 – фрикцион 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6…8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

В качестве примера современной АКП с электронным управлением рассмотрим шестиступенчатую коробку передач 09G  японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:

К– многодисковые муфты В – многодисковые тормоза S – солнечные шестерни Р – сателлиты РТ – водило F – обгонная муфта 1 – вал турбинного колеса 2 – ведомая шестерня промежуточной передачи 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:

а – обычный планетарный редуктор б – планетарный редуктор  Равиньо 1 – вал турбинного колеса Р1 – сателлит коронной шестерни Н1 Р2 – сателлит солнечной шестерни 2 Р3 – сателлит коронной шестерни 1 S1 ­­– солнечная шестерня 1 S2 #8212 солнечная шестерня  2 S3 #8212 солнечная шестерня 3 Н1 – коронная шестерня 1 Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

Источники: http://www.autoshcool.ru/2400-princip-raboty-gidromehanicheskoy-kpp.html, http://znanieavto.ru/kpp/gidromexanicheskaya-korobka-peredach.html, http://ustroistvo-avtomobilya.ru/avtomaticheskie-korobki-peredach/gidromehanicheskaya-korobka-peredach/

Комментариев пока нет!

www.1km-auto.ru

Гидромеханическая коробка передач: принцип работы трансмиссии

2052 Просмотров

История создания такого элемента, как гидромеханическая трансмиссия, может использоваться для демонстрации колоссальных усилий со стороны изготовителей, которые постарались на славу и оснастили автомобили дополнительным комфортом. История насчитывает немало попыток от известных разработчиков, направленных на безболезненность переключения передачи, но когда в прошлом веке появился гидротрансформатор, ситуация изменилась коренным образом. Появился новый способ улучшения управления авто.

Преимущества

Гидромеханическая передача способствует оснащению автомобиля рядом хороших свойств.

  • Можно легко двигаться с места, визуально момент, в который начинается движение, можно и не уловить.
  • Колебания от ударов сбавили темпы воздействия на прочие элементы коробки передач.
  • Даже если водитель захочет двигаться на малых скоростях, управление автомобиля будем максимально точное.
  • Комфортабельность для водителя после появления этого элемента значительно увеличилась.

Именно гидромеханическая передача позволила пресловутому авто Чайка ГАЗ 13 стать более удобным и комфортабельным для водителя.

Устройство системы

По конструкции такой элемент значительно отличается от традиционной механической КПП.

Устройство имеет три узла:

  • блок,
  • механизм, используемый для переключения передач,
  • гидротрансформатор.

На масло посредством этого элемента оказывается сильное давление, впоследствии воздействуя на лопатки турбины, а затем происходит передача на вал КПП.

Устройство предусматривает наличие еще одного колеса, которое имеет лопатки. Также располагается достаточно важный элемент, аппарат для спрямления – реактор (статор). Имеет вид кольца, оснащенного профилированными лопатками, которые обеспечивают направление.

С самого начала старта авто, когда водитель еще не успевает отпустить педаль тормоза, реактор находится в состоянии блокировки. После отпускания педали этот элемент вместе с турбиной начинает работать. Когда скорость, с которой вращается турбина, достигает 80% от общей скорости колеса насоса, то реактор перестает работать.

Таким образом, гидромеханическая передача на КПП имеет достаточно сложное устройство, однако это делает ее назначение важным для работы автомобиля и комфорта водителя в целом.

Принцип работы: особенности

Коробка передач автомобиля гидромеханического плана имеет принцип действия, который заключается в том, что гидротрансформатор способен выступать как немеханический преобразователь для крутящего момента.

Одна из особенностей действия такой коробки автомобиля – это отсутствие механизма, отвечающего за включение/выключение сцепления.

Перспективы использования

Основным преимуществом такого вида коробки автомобиля является простая работа и устройство. Это связано с большим ресурсом, внимательно подобранными гидравлическими жидкостями, и кроме того, такая коробка прослужит своему владельцу гораздо дольше, нежели какая-то другая.

Подведем итоги

Благодаря использованию гидромеханической коробки передач, можно уверенно ездить на автомобилях с двигателями высокой мощности и при этом чувствовать себя совершенно безопасно. Есть предположение, что этот элемент если и сможет уйти в небытие, то не ранее, чем сам двигатель внутреннего сгорания.

portalmashin.ru

Гидромеханическая коробка передач: принцип работы

Молодые автомобилисты часто встречают в сети интернет информацию о гидромеханической коробке передач автомобиля. Однако они до конца не понимают принцип ее работы. В этой статье мы расскажем, как работает гидромеханическая коробка передач, и почему она удобнее обычной механической коробки передач.

Конструкция гидромеханической коробки передач

Гидромеханическая коробка передач имеют немаловажную особенность – она обеспечивает автоматическое сцепление. Водителю не нужно постоянно нажимать педаль сцепления. Несмотря на отсутствие педали сцепления, Гидромеханика все-таки состоит из механической коробки передач и гидротрансформатора. Механическая КПП при этом может иметь разный принцип работы:

— двухвальный;

— трехвальный;

— многовальный;

— планетарный.

Вальный принцип работы гидромеханической коробки передач чаще всего применяется в крупном автомобильном транспорте: автобусах и грузовиках. Вальная гидромеханика работает на основе фрикционов – многодисковых муфт, которые работают в масле. Такой принцип работы позволяет избежать разрыва мощности и крутящего момента при переключении передач.

Также гидромеханическая коробка передач включает в себя ведущий, промежуточный и ведомый валы, многодисковое фрикционное сцепление (фрикцион) и зубчатую муфту. Управляет всеми этими подвижными механизмами передний и задний гидронасос. С помощью центробежного регулятора будет происходить автоматическое переключение передач.

Принцип работы гидромеханической коробки передач

Принцип работы гидромеханической коробки передач описан в таблице ниже.

СоставляющиеОписание
Колеса с лопаткамиГидравлический механизм такой КПП состоит из трех колес: турбинного колеса, насосного колеса и колеса реактора.
Колесо насосаКолесо насоса. работает с той же скоростью вращения, что и маховик двигателя
Турбинное колесоПри работе колеса насоса масло поступает на его наружную часть и под действие центробежной силы заставляет вращаться лопатки турбинного колеса.
Колеса реактораПосле турбинного колеса масло поступает на колесо реактора, которое безударно и плавно транспортирует масло снова в насосное колесо. Благодаря циркуляции масла и перемещается крутящий момент от двигателя к колесам.

Планетарная механическая коробка передач

Является разновидностью гидромеханической коробки передач. Она состоит из планетарных механизмов. Главная солнечная шестерня закреплена на ведущем вале. Солнечная шестерня сцеплена с шестернями-сателлитами, которые свободно располагаются на своих осях. Сателлиты уже соединяются с ведомым валом через водило.

Крутящий момент передается от ведущего к ведомому валу с помощью ленточного тормоза и коронной шестерни. При вращении шестерни сателлиты вращаются вокруг своих собственных осей. Крутящий момент от этого движения через водило передается на ведомый вал. Растормаживание коронной шестерни с помощью ленточного тормоза обеспечивает вращение шестерни. Сателлиты перекатываются по ней беспрепятственно, при этом ведомый вал остается неподвижным.

 

[youtube url=»https://www.youtube.com/watch?v=HMXujdQX688″ width=»560″ height=»315″]

motormania.ru

Трансмиссия автомобиля. Гидромеханическая трансмиссия. — МегаЛекции

Трансмиссия автомобиляпредназначена для передачи мощности от двигателя к ведущим колёсам, изменения частоты вращения колёс и подводимого к ним крутящего момента, как по величине, так и по направлению. По способу передачи энергии трансмиссии делятся на: механические, гидромеханические, гидрообъёмные и электромеханические.

2) Гидромеханическая трансмиссия. В гидромеханических трансмиссиях между двигателем и механической частью трансмиссии устанавливают гидротрансформатор или гидромуфту. В гидромеханической трансмиссии преобразователем величины момента является агрегат, включающий гидротрансформатор и ступенчатую механическую трансмиссию. Гидротрансформатор представляет собой гидродинамический преобразователь, плавно и автоматически изменяющий величину передаваемого момента в зависимости от нагрузки. Его конструкция и принцип действия будут рассмотрены в разделе «Устройство коробок передач». Коэффициент трансформации момента гидротрансформатора лежит в пределах 2,5 – 3. Более высокую трансформацию момента получают за счёт дополнительной механической коробки передач. Основное достоинство гидромеханической трансмиссии заключается в плавном автоматическом регулировании момента в зависимости от нагрузки, что уменьшает число переключений скоростей, снижает утомляемость водителя, улучшает динамику автомобиля, повышает долговечность двигателя. К недостаткам можно отнести меньший, в сравнении с механической трансмиссией, КПД и сложность конструкции.

Рис. 9. Схема гидромеханической трансмиссии:

1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуоси.

 

Подвеска. Упругие элементы. Гасящие устройства

Подвеска служит для упругого соединения рамы или кузова с мостами (колесами) автомобиля, смягчая толчки и удары, возникающие при наезде на неровности дороги. В состав подвески входят: направляющие устройства, упругие элементы, гасящие устройства, стабилизатор.



Упругие элементы

Упругие элементы смягчают вертикальные динамические нагрузки при движении автомобиля по неровной дороге, что улучшает плавность хода.

По типу упругих элементов подвески делят: рессорные, пружинные, торсионные, резиновые, пневматические и комбинированные.

9.2.1. Рессоры. В рессорной подвеске упругим элементом является листовая рессора, состоящая из собранных вместе отдельных листов выгнутой формы, рис. 9.5. Под действием динамической нагрузки листы рессоры сгибаются. Чем больше листов, тем мягче рессора. Листы рессоры при сборке стягивают центральным болтом 1. Для того чтобы листы не сдвигались в бокрис 9.6, один относительно другого применяют U – образные хомуты 1, рис. 9.6а, или специальные выштамповки рис. 9.6б.

Рессорные подвески делают обычно зависимыми. Рессоры располагают вдоль автомобиля и крепят к балке моста и к раме (кузову), рис. 9.7. Крепление к раме осуществляется с помощью ушков, образованных на коренных (самых длинных) листах рессоры, рис. 9.8. При больших нагрузках ушко усиливается отгибом последующих листов, рис. 9.8б и рис. 9.8в.

Рессоры одним ушком с помощью пальца шарнирно крепятся непосредственно к раме, а вторым соединяется с рамой через качающиеся серьги (рис. 9.7а), что позволяет ей изменять длину при прогибе. Крепление рессоры к балке моста (рис. 9.10) может быть 2-х типов: рессорная подушка 1 жестко крепится к балке 2, рис. 9.10а или рессорная подушка свободно устанавливается на балке и может поворачиваться вокруг нее, рис. 9.10б.

Первый способ применяется тогда, когда рессора передает реактивный и тормозной моменты, а второй – когда рессора разгружена от передачи моментов (например, при балансирной подвеске 2-х мостов). Несколько иначе осуществляется крепление рессоры при, так называемой, кантилеверной подвеске, рис. 9.7б. Здесь рессора одним концом крепится шарнирно к балке моста, а в средней части и вторым концом она соединяется с рамой, причем второй конец соединяется с рамой через качающуюся серьгу.

В грузовых автомобилях, у которых разница в нагрузке на рессору, при езде с грузом и без него велика, применяют подрессорник, рис. 9.11. Подрессорник устроен примерно также как основная рессора, только имеет меньшее число листов. Подрессорник крепят к балке моста и располагают над или под основной рессорой. На раме против концов подрессорника крепят упоры.

При полной загрузке в работу вступают подрессорники, а при неполной работает только основная рессора.

Основное преимущество рессорных подвесок заключается в том, что они выполняют одновременно роль упругих элементов и направляющего устройства. Кроме того, рессора частично выполняет функцию гасящего устройства, так как при прогибе листов они скользят друг относительно друга, при этом возникают силы трения и, кинетическая энергия превращается в тепловую, которая рассеивается в пространстве.

9.2.2. Пружинные упругие элементы.Пружинные подвески выполняются, как правило, на основе винтовых пружин. В подвеске они воспринимают только вертикальные нагрузки, а для восприятия горизонтальных и боковых сил, а также моментов необходимы направляющие устройства (рычаги, реактивные штанги, стойки) рис. 9.3, рис. 9.4,рис. 9.22,рис. 9.23,рис. 9.24.

При использовании пружин также необходимо гасящее устройство, так как в пружинах отсутствует трение.

9.2.3. Торсионые упругие элементы. Торсион представляет собой стальной упругий стержень, работающий на скручивание. Одним концом торсион крепится к раме (кузову), а другим к рычагам подвески в результате упругая связь колеса с рамой обеспечивается за счет упругого скручивания торсиона. Конструктивно торсионы выполняют в виде круглых стержней, труб или прямоугольных пластин. Торсионы, как и пружины, требуют направляющих и гасящих устройств.

9.2.4. Резиновые упругие элементы. Такого рода упругие элементы широко применяются в современных автомобилях в виде вспомогательных упругих элементов – ограничителей или буферов (рис. 9.9, рис. 9.10, рис. 9.22, рис. 9.23, рис. 9.24).

9.2.5. Пневматические упругие элементы. Пневматические упругие элементы обеспечивают упругие свойства подвески за счет сжатия воздуха. Наиболее распространены пневматические упругие элементы в виде двухсекционных круглых баллонов, рис. 9.12. Он состоит из резино-кордовой оболочки 1, разделительного кольца 2, прижимных колец 3 и болтов крепления 4. Такие упругие элементы используются часто в автомобилях, у которых нагрузка меняется в широких пределах (автобусы, самосвалы).

Схема такой подвески представлена на рис. 9.13. Компрессор 1 нагнетает сжатый воздух в ресивер 8, через фильтр – водо-маслоотделитель 10 и регулятор давления 9. Из ресивера воздух поступает в регулятор 3 постоянства высоты кузова. Баллон 5 соединен с дополнительным резервуаром 6, в который поступает воздух в случае увеличения его давления в упругом элементе при сжатии, что повышает мягкость подвески.

Регулятор 3 постоянства подъема кузова обеспечивает при любой загрузке одно и тоже расстояние между мостом и кузовом. При возрастании нагрузки кузов опускается и, расстояние между ним и мостом уменьшается. Стойка 4 опускает поршень регулятора 3 вниз. Вследствие этого воздух из ресивера 8 проходит в резервуар 6 и в баллон 5, увеличивая в нем давление, в результате чего кузов поднимается до прежнего уровня. При уменьшении нагрузки все происходит наоборот. В регуляторе 3 есть специальное устройство, замедляющее его срабатывание, поэтому регулятор реагирует только на изменение статической нагрузки. Достоинство такой подвески заключается в высокой плавности хода. Неизменность высоты кузова облегчает загрузку и выгрузку, исключает накренение автомобиля при несимметричной загрузке. Но пневматическая подвеска требует установки направляющих устройств.

9.2.6. Комбинированные упругие элементы. Такие устройства объединяют два и более различных упругих элемента. На рис. 9.14 показана схема гидропневматической подвески.

Насос 2 нагнетает жидкость из бака 1 в аккумулятор давления 3. В аккумуляторе жидкость поступает в полость под мембраной. Над мембраной находится сжатый газ (воздух или азот). Давление в аккумуляторе поддерживается в определенных пределах. При превышении давления жидкость сливается в бак. Из аккумулятора жидкость поступает к регуляторам 4 постоянства высоты подъема кузова правого и левого колеса. Из регулятора 4 жидкость поступает в поршневой пневматический упругий элемент 5. В этом элементе пространство между поршнем 6 и мембраной 7 заполнено жидкостью, а полость над мембраной – сжатым газом. Здесь сжатый газ является упругим телом, а жидкость передает вертикальные нагрузки.

Корпус упругого элемента прикреплен к кузову, а поршень через шток соединен с рычагами подвески. При колебаниях автомобиля, жидкость, из аккумулятора 3 и обратно проходит через систему клапанов 8 и испытывает сопротивление. В результате, часть кинетической энергии превращается в тепловую, и затем, рассеивается в окружающем пространстве. Таким образом, в этой схеме вместе с упругим элементом реализовано и гасящее устройство.\

Гасящие устройства

Гасящие устройства (амортизаторы) предназначены для гашения колебаний кузова и колес автомобиля. В подвеску входит дополнительный элемент: стабилизатор устойчивости.

Принцип действия гасящих устройств основан на превращении механической энергии колебаний в тепловую и последующем ее рассеивании.

Гашение энергии частично обеспечивается трением в подвижных соединениях подвески (особенно в рессорах). Однако для этих целей используют специальные устройства – чаще всего гидравлические амортизаторы, работа которых основана на использовании сопротивления вязкой жидкости при проходе ее через отверстия. Амортизаторы различают по соотношению коэффициентов сопротивления при ходах сжатия КС и отдаче КО, и по наличию или отсутствию разгрузочных клапанов. Амортизаторы бывают двустороннего действия с симметричной (КО = КС) и несимметричной характеристиками, а также одностороннего действия. Сейчас распространены двусторонние несимметричные амортизаторы с разгрузочными клапанами, рис. 9.15, у которых сила сопротивления во время хода сжатия растет медленнее, чем в ходе отдачи. Точки 1 и 2 соответствуют открытию разгрузочных клапанов. У современных амортизаторов КО = (2…5)*КС. По конструкции (рис 9.16)амортизаторы бывают рычажные, рис. 9.16а, и телескопические рис. 9.16б. Наиболее распространены последние.

 

Тормозная система

Тормозная система предназначена для снижения скорости движения автомобиля вплоть до полной остановки и обеспечения неподвижности во время стоянки. В процессе торможения кинетическая энергия автомобиля переходит в работу трения между фрикционными накладками и тормозным барабаном или диском, а так же между шинами и дорогой.

Современные автомобили должны иметь рабочую, запасную и стояночную тормозные системы. Большегрузные автомобили и большие автобусы, эксплуатирующиеся в горных условиях, должны иметь вспомогательную тормозную систему.

К тормозным системам предъявляются следующие требования: стабильные тормозные свойства, надежность, удобство и легкость управления, быстродействие, а также сохранение устойчивости автомобиля при торможении.

Рабочая тормозная система предназначена для управления скоростью на всех режимах движения путем воздействия на механизмы колесных тормозов.

Запасная тормозная система работает при отказе основной системы.

Стояночная тормозная система служит для удержания автомобиля в неподвижном состоянии. Она воздействует на колесные тормоза рабочей тормозной системы или специальный дополнительный тормоз, связанный с трансмиссией автомобиля.

Вспомогательная тормозная система предназначена для уменьшения энергонагруженности тормозных механизмов рабочей тормозной системы, например, на длинных спусках и состоит из моторного или трансмиссионного тормоза – замедлителя.

Различают режим служебного и аварийного торможения. Первое применяют для плавного снижения скорости или остановки в заданном месте, а аварийное торможение производят с максимально возможной, в данных условиях интенсивностью.

Во время служебного торможения используют часто торможение двигателем, когда водитель уменьшает или прекращает подачу топлива в цилиндры двигателя. За счет трения в двигателе и агрегатах трансмиссии создается тормозная сила. Во время торможения двигателем можно использовать и рабочую тормозную систему.

В тормозной системе автомобиля выделяют две основные составляющие: тормозные механизмы и тормозные приводы.

 

Билет №7

1. Трансмиссии автомобилей. Гидрообъемная трансмиссия. Электро механическая трансмиссия.Трансмиссия автомобиля предназначена для передачи мощности от двигателя к ведущим колёсам, изменения частоты вращения колёс и подводимого к ним крутящего момента, как по величине, так и по направлению.

По способу передачи энергии трансмиссии делятся на: механические, гидромеханические, гидрообъёмные и электромеханические.

В механических трансмиссиях передача энергии происходит за счёт механического трения в сцеплениях, а так же зубчатыми колёсами, соединениями валов и шарнирами.

В гидромеханических трансмиссиях между двигателем и механической частью трансмиссии устанавливают гидротрансформатор или гидромуфту.

В гидрообъёмных трансмиссиях двигатель приводит в действие гидронасос, от которого жидкость под высоким давлением подводится к гидромоторам, расположенным в ведущих колёсах.

В электромеханических трансмиссиях двигатель вращает ротор электрогенератора, от которого питается один или несколько (по числу ведущих колёс) электродвигателей, непосредственно (или через редуктор), передающих вращение ведущим колёсам.

Классификация сцеплений.

По принципу действия сцепления подразделяют на фрикционные и гидравлические. Наибольшее распространение получили фрикционные сцепления. Они подразделяются по форме и конструкции трущихся деталей на дисковые, конусные, ленточные, колодочные и др.

Конусные и колодочные сцепления применяются редко, а ленточные часто находят применение в трансмиссиях с автоматическими коробками передач.

Дисковые сцепления применяются наиболее часто. Их, в свою очередь, подразделяют на сухие и масляные, одно, двух и многодисковые. По способу создания силы, сжимающей диски, различают: пружинные (с одной центральной пружиной или несколькими периферийными), полуцентробежные (с пружинами и центробежными грузиками), центробежные (только с грузиками) и электромагнитные.

По типу привода управления сцепления делят на четыре группы: с механическим, гидравлическим, пневматическим и электромагнитным приводами.

Требования, предъявляемые к сцеплениям.Кроме общетехнических требований, касающихся простоты конструкции и обслуживания, высокой надежности, минимальной массы, ремонтопригодности и т. п., к сцеплениям предъявляется ряд специфических требований: плавность включения, чистота выключения, полнота включения, минимальный момент инерции ведомых частей, хороший отвод тепла, ограничение динамических нагрузок на элементы трансмиссии и двигатель, легкость включения.

3. Пневматический тормозной привод.Применение такого типа привода тормозов оправдывается возможностью использования единого источника энергии – воздушного компрессора для работы различных систем автомобиля, включая и тормозную систему. В то же время пневматический привод гораздо сложнее гидравлического по составу элементов и их конструкции. Простейший пневматический тормозной привод состоит из ресивера 1, в который подается сжатый воздух от компрессора, крана 3, приводимого в действие от педали 2 и тормозного цилиндра (камеры) 4, шток 6 которого связан с разжимным кулаком тормоза 7. При торможении пробка крана соединяет полость тормозного цилиндра с ресивером. Сжатый воздух воздействует на поршень 5 и приводит в действие тормозной механизм.

Для того чтобы давление воздуха в цилиндре 4 зависело от усилия на педали 2 (следящее управление) вместо крана 3 устанавливают автоматический следящий механизм

Структурные схемы пневматических тормозных приводов.Сжатый воздух в пневмосистему поступает от компрессора, приводимого в действие от двигателя автомобиля. Сжатый воздух откомпрессора через фильтр-влагоотделитель, регулятор давления,спиртонасытитель, защитные клапаны и поступает в ресиверы.

Билет №8


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

megalektsii.ru