Автомобиль на топливных элементах – почему Toyota, Nissan и Honda делают ставку на водородные автомобили — Сообщество «Электромобили» на DRIVE2

АВТОМОБИЛЬ НА ТОПЛИВНЫХ ЭЛЕМЕНТАХ | Наука и жизнь

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Автомобиль вошел в нашу жизнь так широко, что породил немало проблем, многие из которых требуют безотлагательного решения. Наиболее серьезные из них - шум и загрязнение воздуха. Предсказывают, что через 20-30 лет нефть кончится. Естественно, возникает вопрос: чем заменить нефтяное топливо, чтобы сделать автомобиль безвредным для окружающей среды, а заодно и сберечь нефть для более важных целей, чем работа двигателя внутреннего сгорания?

В США серьезная борьба с загазованностью атмосферы началась с 60х годов прошлого столетия, в Европе - в 80-х. Сейчас принятые нормы токсичности (содержание вредных веществ в отработанных газах) автомобилей в Западной Европе и в США почти не различаются. Последние отечественные модели автомобилей тоже соответствуют принятым во всем мире нормам.

Основные компоненты, с которыми приходится бороться, - окись углерода, двуокись углерода, углеводороды и окислы азота. В зависимости от режима работы двигателя, они поступают в атмосферу в разных количествах и в разных пропорциях. Выполнить нормы, соответствующие стандартам ЕВРО-1, ЕВРО-2, ЕВРО-3, ЕВРО-4, технически вполне возможно, дозируя поступление топлива в цилиндры двигателя и очищая выхлопные газы каталитическим нейтрализатором. Нейтрализатор начинает работать при температуре 600оС. Нагревается он выхлопными газами. На это уходит время, в течение которого выхлопные газы полностью еще не очищаются.

Казалось, электромобиль, который гарантирует тишину и чистый воздух, - наилучший выход из сложившейся ситуации. Идея его создания была особенно популярна в 70е годы, когда прорабатывалась американская программа нулевой токсичности. Но на пути экологически чистой машины появились препятствия, которые помешали ей стать единственным и окончательным решением проблемы.

До сегодняшнего дня нет способа компактного хранения электрической энергии, который позволял бы без подзарядки проезжать столько же, сколько можно проехать на одной заправке бензобака. И если представить себе электромобиль, способный пробежать 600 км, то он сможет везти только аккумуляторы, а время их заправки составит восемь часов. Следует также отметить, что стоимость этих аккумуляторов в несколько раз превосходит стоимость самого автомобиля. Пытались вместо аккумуляторов применить конденсатор ные батареи. Они быстро заряжаются, но так же быстро и разряжаются.

В настоящий момент по земле ездят несколько сотен миллионов автомобилей. Представьте, что будет, если их все станут заряжать одновременно. Откуда взять столько электроэнергии? Чтобы перевести все автомобили на аккумуляторы, необходимы электрические мощности, равные тем, которыми сегодня располагает человечество. А это значит, что надо как минимум удвоить производство электроэнергии.

Для снижения суммарной токсичности автомобилей американцы решили "разбавлять" автомобили с двигателями внутреннего сгорания электромобилями. Согласно этой идее, часть выпускаемой продукции каждого автопроизводителя должны составлять электромобили. Таков следующий шаг по уменьшению токсичности.

Но есть и другое решение. 200 лет назад был изобретен генератор, в котором водород, соединяясь с кислородом, производит воду, а "побочным" продуктом реакции становится электричество. Принцип его работы, грубо говоря, таков: имеется некая пластина, обладающая свойством пропускать протоны и не пропускать электроны. С каждой ее стороны - два электрода - положительный (анод) и отрицательный (катод), связанные между собой в электрическую цепь. С одной стороны пластины подается водород, с другой - кислород. Катализатор, нанесенный на пластину, активирует реакцию расщепления водорода на протон и электрон. Протон проходит через пластину и, соединяясь с кислородом, дает воду. А электрон уходит в подсоединенную электрическую цепь.

Водородно-кислородные топливные элементы были применены на американских и российских лунниках, на "Шаттле" и "Буране". Как часто случается, космические технологии нашли применение и на земле, в автомобильной промышленности.

Топливный элемент, призванный заменить двигатель внутреннего сгорания, состоит из множества ячеек (маленьких генераторов). Напряжение каждой ячейки - от 0,6 до 1,0 В. Соединив ячейки последовательно, можно получить необходимое напряжение. Сегодня мы располагаем технологиями, позволяющими делать ячейки толщиной в полтора миллиметра. Значит, можно добиться того, что масса и габариты новой топливной установки останутся теми же, что и у двигателя внутреннего сгорания равной мощности.

Большая проблема - цена топливной установки (сегодня она примерно в 100 раз дороже двигателя внутреннего сгорания), потому что в ее изготовлении используются дорогие материалы и очень деликатные технологии. Без кропотливой работы по материалам и конструкции, а главное - по созданию технологии массового производства задачу не решить.

Чтобы топливная установка заработала, нужно разместить на борту автомобиля баллоны с газообразным водородом и кислородом. Отсюда - сложности. Во-первых, баллоны с газом занимают много места, а во-вторых, возить их в непосредственной близости друг от друга небезопасно. Поразмыслив, ученые решили, достаточно возить с собой только баллон с водородом, а кислород можно взять из воздуха.

На Волжском автомобильном заводе работы по автомобилям на топливных элементах были начаты в 2000 году, а в 2001 году собран первый автомобиль на топливных элементах - "Антэл-1". Скорее это был не автомобиль, а макет или лаборатория на колесах. Собран он из агрегатов, разработанных ранее для "Бурана", электромобилей и автомобилей ВАЗ и адаптированных для совместной работы на автомобиле.

"Антэл-1" собран на базе пятидверной Нивы. В салоне по-прежнему осталось пять мест. Энергоустановка, работающая на водороде и кислороде, мощностью 17 кВт вырабатывала ток напряжением 120 В. Впоследствии ее заменили на более мощную - 25 кВт. Максимальная скорость была соответственно 70 и 85 км/ч. Емкость баллонов для водорода и кислорода составляла 60 и 36 л, давление газов - 250 атм. Пробег такого автомобиля на одной заправке - 200 км. Энергоустановка разместилась в багажнике автомобиля, а системы управления, тяговый двигатель и стартовая аккумуляторная батарея - под капотом. По сравнению с базовой моделью масса автомобиля увеличилась на 250 кг.

Автомобиль "Антэл-1" демонстрировался на 5-м Московском международном автосалоне, и после его закрытия на Дмитровском автополигоне были проведены тестовые заезды для журналистов.

Работа с "Антэл-1" показала, что на достаточно быстрый разгон первому автомобилю на топливных элементах не хватает мощности. Для того чтобы исключить проблему, решили использовать буферный источник тока. Им стала аккумуляторная батарея. Буферная система работает по принципу: принять - выбросить.

Для нового автомобиля "Антэл-2" была разработана никель-металлгидридная аккумуляторная батарея с высокой удельной энергоемкостью ( емкость батареи - 10 А.ч) и напряжением 200 В, способная быстро заряжаться и разряжаться. Новая батарея позволила кратковременно увеличивать мощность при разгонах почти в два раза за счет энергии, "принятой" при торможении. Когда происходит торможение автомобиля, то кинетическая энергия превращается в "Антэл-2" в электрическую. Она заряжает аккумуляторную батарею. При разгоне энергия буферной аккумуляторной батареи подается на тяговый электродвигатель, дополняя энергию генератора.

Тормозная система автомобиля тоже претерпела изменения. На автомобиле "Антэл-2" установлен компактный электроусилитель тормозов, благодаря которому управлять автомобилем стало гораздо легче.

"Антэл-2" проезжает без подзарядки 350 км. На его борту предусмотрена система хранения и подачи водорода, оснащенная тремя сверхлегкими и прочными баллонами по 30 л. Водород в них находится под давлением 400 атм.

На то, чтобы закачать в 60-литровый баллон (на "Антэл-1") водород под давлением 250 атм, уходило два часа. Это никого не устраивало. Но если не закачивать газ в пустой баллон, а дать ему туда перетечь из некой емкости, в которой он хранится под определенным (необходимым и постоянно поддерживаемым) давлением, то на всю процедуру уйдет 5-10 минут. Именно такая технология внедрена на "Антэл-2". Сейчас мы строим опытную заправочную станцию.

В "Антэл-1" очень много времени уходило и на запуск установки. Чтобы автомобиль тронулся с места, нужно было ждать около полутора часов, пока генератор разогреется до 60оС (на полную мощность он выходит при 95оС). Время запуска автомобиля "Антэл-2" удалось сократить до 10-15 минут благодаря специальным нагревателям, установленным прямо в генератор. Питаются они от буферной батареи. При достижении температуры 60оС включается генератор, который, работая, сам выделяет тепло; таким образом, время выхода на максимальную мощность сокращается.

С самого начала было понятно, что возить в непосредственной близости баллоны с водородом и кислородом опасно, к тому же они занимают много места и требуют заправки. Поэтому задача перевести работу электрохимического генератора кислорода на воздух ни у кого не вызывала сомнения. Во втором автомобиле на топливных элементах мы ее решили: "Антэл-2" укомплектован первым отечественным щелочным водородно-воздушным генератором на топливных элементах напряжением 240 В и мощностью 25 кВт. Система оснащена компрессором, способным подавать 100 кг воздуха в час в батарею топливных элементов под давлением 3,3 атм.

Так как в устройстве генератора используется щелочь - едкий калий (им пропитывается пластина, разделяющая водородную и воздушные полости), пришлось разработать систему очистки воздуха (до тысячных долей процентов) от углекислого газа, дабы избежать реакции превращения щелочи в соль.

Еще для автомобиля "Антэл-2" разработан новый тяговый электродвигатель переменного тока максимальной мощностью 90 кВт, напряжением 200-300 В, кпд более 90% и массой 30 кг (электродвигатель "Антэл-1" имел показатели соответственно: 25 кВт, 120 В, 75% и 68 кг).

Остается отметить, что "Антэл-2" представляет собой пятиместный "Универсал" с полноразмерным багажником (базовой моделью послужила ЛАДА 111). А все узлы и системы энергоустановки разместились под полом и в подкапотном пространстве.

Работа над следующим автомобилем на топливных элементах уже идет. В первую очередь вместо газобаллонного хранения водорода на новом автомобиле будет установлен топливный процессор для получения водорода из бензина на борту автомобиля. Это позволит увеличить пробег на одной заправке до 900-950 км. Испытания "Антэл-2" покажут и другие направления, в которых следует работать.

Сегодня весь мир работает над созданием чистых автомобилей, в которых топливом служит водород. Но путь этот - не единственный. Перейти на один вид транспорта не удастся, да и не нужно. Для разных целей должны использоваться разные машины. Например, если на аккумуляторном электромобиле развозят по магазинам города хлеб и колбасу, а водитель, закончив работу, отправляется отдыхать, то длительная подзарядка аккумуляторов никому не повредит. А где подзаряжаться? Французы и швейцарцы уже решают этот вопрос. На любой бензозаправке есть розетка: включаешь в нее разъем, опускаешь монету и заряжаешь электромобиль. Такие же розетки есть во дворах жилых домов. Есть много ситуаций, в которых выгодно и экономично использовать именно этот вид транспорта. Электромобиль нужен для ближних поездок, а в гараже должен стоять еще и автомобиль (может быть, водородный) на "дальнюю дорогу".

Хочу воспользоваться случаем, чтобы поблагодарить наших партнеров по работе над созданием автомобилей на топливных элементах с Уральского электрохимического комбината (г. Новоуральск), Уральского электромеханического завода и из Научно-производственного объединения "Автоматика" (г. Екатеринбург), Научно-исследовательской лаборатории двигателей (г. Рыбинск), ВНИИ экспериментальной физики (г. Саров), Института катализа Сибирского отделения РАН (г. Новосибирск), Аккумуляторной компании "Ригель" (Санкт-Петербург), Ракетно-космической корпорации "Энергия" (г. Королев).

Кандидат технических наук, профессор Г. Мирзоев,
советник вице-президента ОАО "АВТОВАЗ" по техническому развитию.
Записала А. МАГОМАЕВА.

www.nkj.ru

что это такое, как это работает и зачем это нужно?

Отметьте это в своих календарях: Toyota обещает в своем модельном ряду 2015 года представить серийное транспортное стредство на водородных топливных элементах. Это означает, что они могут появиться на дорогах США в Калифорнии и, возможно, в части северо-восточных штатов, уже в конце следующего года. Мы совершили путешествие в Японию на прошлой неделе, чтобы пройти тест-драйв опытного образца. И вот то, что мы узнали:

Что это

Говоря простым языком, автомобиль на топливных элементах (или FCV — Fuel Cell Vehicle), является транспортным средством, которое приводится в движение электрическим мотором, который работает на электроэнергии, вырабатываемой в результате химической реакции водорода (на борту автомобиля) и забортного кислорода. Единственным побочным продуктом этой реакции является обыкновенная вода (h3O — два атома водорода и один атом кислорода, помните уроки химии?), которая сбрасывается в виде пара через выхлопную трубу.

Как это выглядит

Автомобиль 2015 Toyota на топливных элементах, базируется на основе Lexus HS (на фото выше). Мы тестировали некую помесь из разных автомобилей (тестируемые автомобили оснастили различными частями от других транспортных средств, кроме того, в целях тестирования, там были установлены экспериментальные и опытные образцы деталей), основой которых являлся модифицированный кузов Lexus HS, а интерьер представлял собой сборную солянку из разных автомобилей. Таким образом, весьма сложно сказать как именно будет выглядеть серийный автомобиль.

Но, по словам Сатоши Огисо, управляющего директора и главы передовых технологий Тойоты (он же — отец Prius), серийная версия автомобиля будет весьма похожа на Lexus HS с некоторыми изменениями, поскольку аэродинамике придается, весьма большое значение.

На чем оно ездит

Принцип работы автомобилей на топливных элементах весьма схож с принципом работы подключаемых или полностью электрических транспортных средств. Все они имеют электродвигатель, блок управления и батареи. В подключаемых гибридах добавляется генератор, двигатель внутреннего сгорания и топливный бак. Вместо этого, автомобиль на топливных элементах получает топливные ячейки и пару баллонов с сжатым водородом.

Новые топливные элементы имеют мощность, более чем вдвое превышающую показатели предыдущей версии, генерируя 3 кВт на литр. Так как водород является более концентрированным источником энергии, нежели электричество, автомобиль на топливных элементах может хранить в 4-5 раз больше энергии на борту, и ваш автомобиль может быть использован даже как генератор электроэнергии, в чрезвычайных ситуациях, питая освещение и электроприборы на протяжении более чем одной недели.

Как ее заправлять

В отличие от электрических транспортных средств, вы не сможете заправляться дома — вам будет необходимо найти водородную заправочную станцию. Именно поэтому новинка будет доступна сначала только в Калифорнии, до тех пор пока не будет построена федеральная инфраструктура. На станции, заполнение двух водородных баллонов высокого давления займет около 3 минут, примерно столько же, сколько и обыкновенная заправка бензином.

Именно в этом Toyota и видит основное преимущество, по сравнению с нынешними электрическими транспортными средствами — возможность быстро дозаправиться и двигаться дальше по своим делам, а не ждать часами, пока происходит зарядка. Поэтому, как только будет установлено достаточное количество водородных АЗС, проблемы связанные с ограниченным запасом хода электромобилей, не будут касаться владельцев транспортных средств на топливных элементах.

Каков запас хода

В тестировании, которое проводила Toyota, практический запас хода для автомобиля на топливных ячейках, составил более 500 км (или 310 миль), когда источником энергии выступает водород, который хранится на борту автомобиля в виде двух баллонов. Однако одному из испытываемых автомобилей удалось добиться запаса хода в 650 км, или около 404 миль.

Как она едет

Опять же оговоримся что, испытываемые транспортные средства, на которых нам разрешили поездить не были точными копиями серийных автомобилей, но нас заверили, что они были настроены довольно близко к тому, как конечная продукция автоконцерна будет вести себя после начала продаж. И так как это были сильно модифицированные автомобили, состоящие из разных частей, нам позволили порулить их всего 4 минуты, по заранее обозначенному маршруту на закрытой парковке. Это конечно не классический тест-драйв, но достаточно для того, чтобы почувствовать ускорение и управляемость.

Транспортные средства на топливных ячейках, как и электромобили, имеют максимальный крутящий момент практически мгновенно со старта. Ускорение быстрое, без задержек и провалов, которые присущи бензиновым автомобилям с автоматической коробкой передач. А так как двигатель электрический, он не производит никаких звуков, пока вы не нажмете на педаль газа. Вот тогда вы и начинаете слышать футуристическое завывание все громче и громче, по мере набора скорости. Непонятно, уберет ли Toyota это завывание в серийных автомобилях, но нам оно на самом деле понравилось.

При совершении резких и быстрых поворотов, резина автомобиля начинает повизгивать, но опять же, наверняка в серийной модели будут применяться иные покрышки и настройки. Рулежка отличается свежестью и отзывчивостью, как будто вы едете в аналогичных моделях Toyota или Lexus.

Итого

Новый автомобиль на топливных ячейках, обещает стать отличным автомобилем. Вы получите преимущество нулевого выброса электромобиля и быструю дозаправку бензинового автомобиля — все в одном флаконе! Правда с одной поправкой — если вы живете недалеко от водородной заправочной станции — в противном случае все становится не таким уж радужным, но это пока.

Прогресс должен с чего-то начинаться, и Toyota надеется, сделав автомобиль на топливных ячейках более доступным и роскошным, что водородно-заправочная инфраструктура вырастет довольно быстро. И если все произойдет так, как Toyota ожидает, автомобили на топливных ячейках к 2020 году будут так же популярны на дорогах как и гибриды сегодня.

Публикации по теме:

aenergy.ru

Toyota Mirai — серийный автомобиль на водороде

Ноябрь 2013 года был ознаменован тем, что концерн «Toyota» представил на всеобщее обозрение новый автомобиль – презентабельный седан, который первым был разработан компанией как гибридное водородное авто на топливных элементах.

Презентация проводилась в одном из крупнейших автосалонов Токио, где президентом компании было объявлено название оригинального изобретения, «Toyota Mirai», а также были озвучены планы концерна на ближайшее будущее.

Параметры водородного автомобиля от Тойоты

В основу новой модели была взята «Toyota FCV». При этом основные системы и агрегаты качественно усовершенствовали и модернизировали, создав обособленный шедевр автомобильного производства. Оптимальный клиренс в 130 мм, уютные пропорции четырехместного седана и передний привод довершает базовая комплектация с легкосплавными дисками R17 и уникальной гибридной установкой FCA110.

Именно эта установка позволяет автомобилю производить действия и выполнять свои функции при помощи водородных топливных элементов – при химической реакции между кислородом и водородом, и выработанной вследствие этого электроэнергии.

Процесс горения при этом не происходит, а преобразование водорода в электрический ток осуществляется с максимальным КПД в 83% (это при среднем показателе КПД двигателей автомобилей «Toyota» — 23%).

Электродвигатель новой Toyota Mirai обладает максимальной мощностью в 154 лошадиные силы или 113 киловатт. Вырабатываемое при помощи топливных элементов электричество проходит через специальный повышающий преобразователь. Далее происходит преобразование постоянного тока в переменный, увеличивая напряжение до 650 вольт.

Toyota Mirai — безопасность на дороге и в атмосфере

О преимуществах нового автомобиля можно говорить достаточно долго. Особенно уверенно и выигрышно они выглядят в сравнении с любыми современными транспортными средствами, оснащенными двигателями внутреннего сгорания или гибридами. Основными достоинствами «Toyota Mirai» можно считать следующие:

  • Быстрая заправка – не более чем три минуты уходят на заправку двух резервуаров;
  • Нулевые выбросы вредных веществ в атмосферу;
  • Запас хода на одной заправке (одного бака хватит на 650 км).

Даже в сравнении с электромобилями Mirai – более успешный агрегат, учитывая хотя бы то, что электромобили заряжаются несколько часов и проехать на одной подзарядке могут гораздо меньшее расстояние.

Серийные автомобили на водороде в Японии и мире

Стоимость водородных автомобилей нового поколения по приблизительным расчетам будет колебаться в пределах 57-70 тысяч долларов. Toyota Mirai поступит в «ин трейд» уже в декабре 2014 года (для автомобильного рынка Японии), а в странах Европы и Соединенных Штатах продажи водородной Тойоты стартуют в 2015 году.

Еще одним не до конца решенным вопросом остается проблема заправки водородных автомобилей при их массовой продаже. В некоторых странах водородные заправочные станции уже начинают появляться, однако широкого развития пока не наблюдается.

Например, по всей Европе таких заправок всего 82, в Америке – 124, в Китае можно насчитать 23 водородные заправочные станции.

Кстати, еще один японский производитель заявил на днях, что пускает в серию свой водородный автомобиль — Honda FCV (первый прототип Honda FCX Clarity был выпущен еще в 1999 году) и в 2016 новая Fuel Cell eXperimental Хонда будет продаваться в Японии, Европе и США.

www.sciencedebate2008.com

Автомобили на топливных элементах | Энергия

Как вы убедились, водород, метан, пропан и другие виды топлива можно просто сжигать, чтобы обеспечить движение автомобиля. Однако их можно использовать и не в такой непосредственной форме, а в виде изготовленных по специальной технологии топливных элементов.

Автомобили, которые на них работают, так и называют — автомобили на топливных элементах.

Что такое топливный элемент?

В конце XX века появился новый вид электрохимических источников питания, которые можно отнести к области альтернативной энергетики, — топливные элементы. Наибольшее внимание на первых этапах научно-исследовательских работ уделялось водородным топливным элементам.

Как показывает название, электричество они вырабатывают, используя водород. Процесс состоит в том, что водород соединяется с кислородом (т. е. окисляется), при этом выделяется тепловая энергия и образуется вода, а также немного закиси азота, если использовался атмосферный воздух. После того как водородный топливный элемент начинает производить ток, все, что требуется, — это добавлять водород.
Таким образом, процесс горения водорода заменяется в топливных элементах процессом окисления, который является более контролируемым и происходит при существенно более низкой температуре (С точки зрения химии, горение и окисление — это один и тот же тип реакций: горение — это быстрая реакция окисления.). Существует несколько технических решений реализации такого процесса. Один из наиболее широко распространенных вариантов — это топливные элементы с протонно-обменными мембранами (ПОМ). Один такой топливный элемент обеспечивает постоянное напряжение примерно 0,7 В, т. е. чуть меньше половины напряжения типичного электрохимического сухого элемента. Для того чтобы получить большее напряжение, одиночные элементы соединяются последовательно. При этом напряжение, обеспечиваемое отдельными элементами, суммируется. Например, чтобы получить постоянное напряжение 14 В, необходимо соединить последовательно 20 элементов. Комплект соединенных последовательно топливных элементов, представляющий собой, по сути, аккумулятор, называется стэк. Чтобы увеличить емкость и вырабатываемый ток, топливные элементы, или стэки, нужно соединить параллельно. При этом ток от отдельных топливных элементов, или стэков, будет суммироваться; например, если соединить параллельно пять стэков, каждый из которых обеспечивает постоянное напряжение 14 В и ток до 10 А, то полученное устройство будет выдавать постоянное напряжение 14 В, а ток — до 50 А.
Стэки из топливных элементов могут быть разных размеров. Стэк, имеющий размеры кейса с книгами, может питать маленький электромобиль. Топливные элементы меньших размеров, называемые микротопливными элементами, могут использоваться для питания любых устройств, которые работают на обычных элементах питания: ноутбуков, портативных радиоприемников, электрических фонариков.

Водород — не единственное вещество, которое может применяться для создания топливных элементов. Были проведены исследования почти всех веществ, которые могут вступать в реакцию с кислородом с выделением энергии. Созданы топливные элементы на метаноле (метиловом спирте), который имеет преимущества перед водородом, так как он проще в хранении и транспортировке, потому что находится при комнатной температуре в жидком состоянии. В топливных элементах применялся пропан. Он хранится в баллонах для кухонных плит или обогревателей, используемых в сельских местностях. Нашел свое применение и метан. Однако некоторые ученые и инженеры возражают против пропана и метана, так как общество уже слишком сильно от них зависит, при том что относить их к «чистым» альтернативным видам топлива нельзя.

www.enersy.ru

АНТЭЛ — Энциклопедия журнала "За рулем"

Первый отечественный экологически чистый автомобиль АНТЭЛ построен на базе ВАЗ-2131 "Нива", вернее, этот автомобиль был носителем топливных элементов.
На смену первому АНТЭЛу пришел второй, а затем и третий. Главное отличие последней - на борту нет баллонов высокого давления, да и заправлять ее надо обычным бензином.

АНТЭЛ-1

В 2001 году только кузов пятидверной "Нивы" мог вместить громоздкую силовую установку на топливных элементах. Под капотом электродвигатель мощностью 25 кВт, батарея для разогрева и запуска энергоустановки и блок системы управления. Источник энергии - модернизированный электрохимический генератор "Фотон", созданный в свое время для решения космических задач. Его "упаковали" в просторный багажник бывшего вседорожника, ставшего переднеприводным электромобилем. Баллоны с кислородом спрятали под задним сиденьем, а водородные, в которых газ под давлением 250 атмосфер, - непосредственно над генератором. Места для багажа не осталось. С пятью седоками в салоне масса машины вплотную приближалась к двум тоннам. При запасе водорода 60, а кислорода 36 л автомобиль развивал скорость до 80 км/ч и преодолевал 200 км без "заправки".

АНТЭЛ-2

Это ВАЗ-2111, который и по начинке существенно отличается от первого АНТЭЛа. Новый электродвигатель переменного тока очень компактен, поэтому уместился в моторном отсеке вместе с энергоустановкой. Сама установка - уже не доработанная космическая батарея, а созданный специально для автомобиля водородно-воздушный электрохимический генератор. Кислород он берет из атмосферного воздуха, очищенного от примесей углекислоты.
Водородные баллоны разместили под пол багажника. Их суммарная емкость увеличена до 90 л, сжатых до 400 атмосфер. Это позволило довести запас хода до 350 км, что уже сравнимо с обычным автомобилем. Под подушкой заднего сиденья, где обычно расположен бензобак, размещены блоки систем управления источниками питания и электроприводом, а также буферная батарея. Ее задача - обеспечить разогрев и запуск энергоустановки и помогать ей при пиковых нагрузках. Багажник почти свободен. Его емкость - 350 л - несколько меньше штатного, так как пол чуть приподнят над водородными баллонами.
Второй АНТЭЛ получился легче почти на 300 кг, уложившись в снаряженную массу 1300 кг. Максимальная скорость выросла до 100 км/ч.
В проекте участвовали многие предприятия. Щелочные воздушно-водородные топливные элементы напряжением 240 вольт созданы совместно с Уральским электрохимическим комбинатом. Наряду с переходом от сжатого кислорода к атмосферному воздуху, почти в 20 раз снижено содержание драгоценных металлов в катализаторах и, соответственно, стоимость последних.
Рыбинская научно-исследовательская лаборатория разработала и изготовила компактный и легкий тяговый электродвигатель, КПД которого более 90% - на 20% выше первого двигателя. Новый электромотор вдвое легче и вчетверо мощнее. В режиме торможения автомобиля электродвигатель способен работать в режиме генератора, подзаряжая буферную батарею (рекурперация).
Совместно с ракетно-космической корпорацией "Энергия" созданы супербаллоны, способные хранить водород под давлением 400 атмосфер, и система очистки воздуха от присутствующего в нем СО2.
Питерская аккумуляторная компания "Ригель" сделала никель-металлогидридный аккумулятор напряжением 240 В и емкостью 10 А.ч. Он превосходит традиционные свинцово-кислотные по удельной энергоемкости в четыре раза. Эта батарея обеспечивает быстрый запуск энергоустановки и подключается к ней, увеличивая ее мощность в два раза при разгоне автомобиля.
Екатеринбургское НПО "Автоматика" разработало системы управления энергоустановкой и электроприводом, а поволжское отделение российской инженерной академии - электрический усилитель тормозов.
В АНТЭЛ-3 водород планируют получать из бензина уже на борту автомобиля, поэтому заправляться он будет на обычных АЗС.
Упразднят и водородные баллоны - все-таки не дело возить с собой газ под давлением 400 атмосфер. Да и заправка их - дело не простое и не такое уж быстрое. Вместо них - топливный процессор, реформирующий бензин в водород и углекислый газ. По расчетам, нововведения вместе с бензобаком увеличат массу автомобиля всего на 30 килограммов и впишутся во второй АНТЭЛ. Стандартный топливный бак объемом 45 л обеспечит ему запас хода почти в тысячу километров. При том, что из выхлопной трубы будут вылетать только вода и углекислый газ.


Схема автомобиля АНТЭЛ-1 на водородно-кислородных элементах
Схема автомобиля АНТЭЛ-2 на водородно-воздушных топливных элементах
АНТЭЛ-2
АНТЭЛ-2
Схема автомобиля АНТЭЛ-3 на водородно-воздушных топливных элементах с топливным процессором
АНТЭЛ-3
АНТЭЛ-3


Текст подготовил Сергей Мишин

wiki.zr.ru

Почему мы никогда не будем ездить на водородных автомобилях: engineering_ru

Недавно Toyota объявила о том, что передаёт все свои патенты, связанные с автомобилями на топливных элементах в публичное пространство, и теперь они доступны для использования совершенно бесплатно. Новость умиляет тем, что патентов набралось аж 5 680 штук, задумайтесь только, как старались корпоративные юристы, патентуя всё вплоть до округлостей на кнопках. Но дело не только в этом, ведь в прошлом году именно Tesla стала первой, кто в мире патентных троллей и бесконечных судов открыл свои патенты. К слову, их у компании, выпускающей самый известный электромобиль, было меньше трёх сотен.


Toyota Mirai - первый в мире автомобиль на водородных топливных
элементах, который можно будет купить, а не взять в лизинг.

Но я хочу поговорить не столько об этом событии, сколько о том, почему даже появление первого автомобиля на топливных элементах, который можно купить, ничего не меняет для водородных автомобилей, и почему эта ветвь развития является абсолютно тупиковый. Илон Маск, CEO Tesla Motors, называет топливные элементы (fuel cells) "fool cells" (элементы одурачивания), аккумуляторные эксперты сходятся в том, что все в индустрии знают, что топливные элементы это ерунда, просто не все признают это, я же сосредоточусь на фактах.


Из-за падения цен на нефть стоимость галлона (3.76 литра) бензина в США упала
до $2, но даже во время дорогой нефти цена не поднималась выше $4.

1. Водород дорог.
Это просто факт. Сейчас рыночная цена на газ - $8.96 за эквивалент галлона бензина, 0.997 кг (данные за октябрь 2014 г.). Бак Toyota Mirai вмещает 5 кг водорода. Таким образом, одна заправка обошлась бы вам в $45 и её хватило на 480 км по методике тестирования EPA (данные ещё не проверены EPA, но вряд ли эта цифра окажется больше), что выливается в $9.38 за 100 км. Для сравнения, Toyota Prius проедет те же 100 км, потратив $2.76, а Tesla Model S - $2.99, если использовать ту же методику EPA и текущие средние американские цены.


К 2017 году Toyota планирует довести годовой выпуск Mirai до 2 100 штук.
Хотя существует множество оценок, предполагающих, что при больших объемах производства стоимость водорода снизится до $3 за кг (и приблизится к текущей цене на бензин), даже сама Toyota менее оптимистична в своих прогнозах: стоимость бака для Mirai снизится до $30 в будущем. Сейчас в США производится 7.31 миллионов кг ворода в день, в год около 2 600 миллионов килограмм. При среднегодовом пробеге около 21 500 км, его бы хватило для 12 миллионов автомобилей, то есть даже если бы водородных автомобилей в США продавали 10% от всех новых авто в течении 10 лет, производство лишь удвоилось, что не дало бы такого радикального снижения цены.


Предприятие по паровой конверсии природного газа в водород.
2. Производство водорода "грязнее" электрогенерации
Сейчас 95% водорода производится из углеводородов с помощью реакции паровой конверсии или частичного окисления. Остаётся от природного газа или углеводородов CO2, тот самый с которым все страны дружно борятся развитием альтернативной энергетики и альтернативных автомобилей. Если вспомнить, что в Европе и Азии, в отличие от США, нет своего природного газа, для того чтобы из него делать водород, то всё становится ещё печальней. Сейчас использование водорода ставит в прямую зависимость от цены на газ, что не сильно отличается от нефтяной зависимости, электричество же генерируется из десятка различных источников. Теоретически, водород можно получать электролизом, но сейчас такой газ для США будет в 3 раза дороже получаемого из метана. Более того, так как получение электричества не экологически чистый процесс, а конверсия электричества в водород, затем обратно из водорода в электричество в топливных элементах имеет низкий суммарный КПД, выбросы будут значительно выше, чем для электромобилей.


Реакция паровой конверсии метана: в качестве
побочного продукта выделяется пресловутый CO2

Для получения одного килограмма водорода требует 52.5 кВтч на электролизере с 75% эффективностью. Таким образом, Toyota Mirai, используя водород, полученный с помощью электролиза будет тратить 54,69 кВтч на 100 км. Даже огромная, более чем 2-х тонная Model S потребляет 23.75 кВтч на 100 км, а Mirai заметно меньше и не может похвастаться разгоном до сотни за 4 секунды. Добавьте к этому транспортировку водорода, компрессию, строительство электролизеров, строительство водородных заправок и станет понятно, что даже теоретически это не путь по уменьшению вредных выбросов в атмосферу.


Водородная заправочная станция стоит $2 млн. и
способна заправить лишь 30 автомобилей за сутки.

3. Водородная инфраструктура очень дорога и не развита.
Одна водородная заправочная станция обходится в $2 миллиона. Калифорния уже потратила $100 миллионов на водородные заправочные станции. Высокую цену станции подтверждают и европейские источники, например только господдержка на одну станцию в Великобритании составляет £1 млн. Вы думаете, зато такая станция может обслужить сотни машин? Нет, станции рассчитаны на заправку максимум 30 автомобилей в день. С одной стороны больше и не надо, откуда там взяться хотя бы двум, но с другой стороны суперзарядка Tesla Motors на 6-12 стоек обходится компании в $100k - $150k, а более продвинутая версия с солнечными батареями на крыше и аккумуляторами на 500кВтч для сохранения солнечной энергии в "целых" $300k. Надо ли добавлять, что такая станция в действительности может обслужить больше сотни машин в день.


Всего за год без какой-то государственной помощи Tesla Motors сделала
возможными дальние поездки на Model S по Западной Европе.

Сейчас в США 13 водородных заправочных станций. В 2015 году планируют открыть ещё пару десятков. Я думаю, не ошибусь, если скажу, что эти планы следуют за водородными автомобилями на протяжении последних 10 лет. Правда, одна лишь компания Tesla Motors, используя часть прибыли от продажи своих электромобилей без государственных грантов, за один месяц, декабрь 2014 года открыла 54 своих суперзарядки, 12 из них в США, каждая на 6-8 зарядочных стоек. За год в Европе открыто более 120 суперзарядок, такое же количество водородных станций обошлось бы в четверть миллиарда долларов.


Водородный Hyundai Tucson стоит $144 400, и даже такая высокая
цена не означает, что он не субсидируется производителем.

4. Водородные автомобили дороги.
Хотя Toyota Mirai будет продаваться на американском рынке за $62 000, большинство экспертов сходится во мнении, что эта цена субсидирована производителем (1, 2) Точных цифр от самой Тойоты нет, косвенно же это подтверждается высказыванием главы R&D компании о том, что автомобили на топливных элементах смогуть быть конкурентными по цене с электромобилями к 2030 году и стоимостью топливных элементов. Субсидирование производителем подтверждает и цена в $144 400 Hyundai Tucson на топливных элементах, продающийся в Южной Коррее. Но даже после такой большой субсидии со стороны производителя, покупатели не торопятся покупать автомобили на топливных ячейках.


Баки из углепластика со сжатым под давлением 680 атмосфер
водородом располагаются под днищем Toyota Mirai.

5. Нет ни одного преимущества водородных автомобилей перед электромобилями.
Большую часть недостатков я уже перечислил. Оставлю за бортом безопасность: хотя я бы побоялся ездить на двух баллонах с водородом под днищем, производитель утверждает, что это безопасно, так давайте поверим ему. Попробуем найти хоть какие-то преимущества автомобилей на водороде перед электромобилями. Запас хода? У Toyota Mirai - 480 км, у Tesla Model S - 424 км, Tesla Roadster после обновления в следующем году сможет проехать почти 640 км, все цифры по одной и той же методике тестирования EPA, "яблоки с яблоками", что называется. А есть же ещё и плагин-гибриды, которые дают симбиоз экономичности электромобилей с возможностью движения на обычном топливе на дальние расстояния. В общем, запас хода после появление Tesla уже не аргумент.


Tesla Model S P85D разгоняется от 0 до 100 км/ч за 3.3 секунды, в то время как
водородные автомобили довольствуются лишь динамикой самых слабых "дизелей".

Динамика? Разгон Toyota Mirai (от $62 000 в США) около 10 секунд до сотни, электромобиль BMW i3 (от $42 000 в США) набирает ту же скорость за шесть с половиной секунд, a Model S P85D разгоняется до сотни как McLaren F1. Остаётся единственное преимущество - скорость заправки за 3 минуты. Это могло бы быть козырем, если когда-нибудь водородных заправок стало как бензиновых. До этого момента преимущество у электромобилей - постоянная зарядка дома или на работе обеспечивает полностью заряженный автомобиль без необходимости куда-то специально заезжать. А быстрая зарядка даёт возможность полностью зарядиться за время обеда с семьёй при поездках на дальние расстояни. Если же спор идёт за абсолютные цифры, быстрая замена батареи позволяет через 1,5 минуты продолжить движение с "полным баком".


Honda тоже планирует выпустить автомобиль на топливных элементах
в конце 2015 года, правда пока он больше похож на концепт.

Резонно возникает вопрос: а зачем тогда это всё Toyota и другим компаниям. Тут надо уточнить, что кроме японского гиганта интерес к автомобилям на топливных элементах в разное время возникал лишь у Honda, Hyundai и немцев (Audi, VW, Mercedes, BMW). Остальные автомобильные производители были к ним равнодушны. В то же время и от этих компаний всё чаще слышится снижение интереса (VW, BMW, Hyundai) к автомобилям на топливных ячейках. Итак,


Сомневаюсь, что недавно представленный
водородный концепт Mercedes F 015 вообще ездит.

Зачем автомобильные компании продолжают делать водородные автомобили?
а) Диверсификация
Разработка и создание рабочего прототипа может стоить всего $1 млн. Создание концепта для автосалона ещё проще - он не обязан ездить. Для компаний с десятками миллиардов долларов оборота - это просто капля в море. А вдруг стрельнет, а вдруг именно эта технология окажется перспективной через 5 лет.

б) Сотрудничество между компаниями
Honda и BMW активно сотрудничают с Toyota и было бы в каких-то случаях не этично и не дальновидно не поддерживать её.


Электрический Fiat 500e продаётся лишь в Калифорнии, США для соответствия
экологическому законодательству. В Европе об этой машине никто не слышал.

в) Соответствие экологическим требованиям
Экологические требования в развитых странах ужесточаются каждый год. Например, для Калифорнии несколько производителей выпускает электромобили только для того, чтобы соответствовать CARB-законодательству. Сейчас законодательство изменилось так, что выпустить один автомобиль на водородных топливных элементах стало выгоднее в 5 раз, чем электромобиль. Добавьте сюда поддержку установки заправочной инфраструктуры постоянными грантами и вы получите готовый рецепт существования автомобилей не нужных самим производителям.


За 15 лет все автомобили Toyota получили гибридные версии.
г) Маркетинг
15 лет назад Toyota создала уникальный для того времени автомобиль, гибрид Toyota Prius. Вначале его производство было даже убыточным для компании, но позже продажи увеличились, себестоимость снижалась, и сейчас слово гибрид и экономичность для всех ассоциируется, главным образом, с Toyota. Продажи гибридных автомобилей составляют приличную долю доходов компании и спустя 15 лет стали высокомаржинальными. И тут появляются электромобили и плагин-гибриды. В этом сегменте конкуренция быстро нарастает, хотя доля продаж ещё заметно меньше, чем у обычных гибридов. В то же время доля обычных гибридов начинает падать, а электромобили и плагин-гибриды растут каждый год. При этом у Toyota нет никаких серьёзных наработок в этом сегменте.

Что надо сделать? Правильно, нужно сделать "poker face", говорить, что всё это ерунда, и дальше продавать Prius-ы миллионами.

engineering-ru.livejournal.com

Новый автомобиль Toyota Mirai, работающий на водороде

Технологии

Представьте, что вместо того, чтобы выбрасывать вредную смесь двуокиси углерода, окиси углерода, углеводородов, бензола и различных твердых частиц, выхлопная труба Вашего автомобиля испускает только воду.

Это может звучать как научно-фантастический рассказ, но на самом деле является реальным новым автомобилем под названием Toyota Mirai, который появится на улицах уже в этом году.


Авто на водороде

avto2.jpg

В то время, как мы привыкли заполнять бензином или дизельным топливом свой автомобиль, новое "японское чудо" – Мирай – работает на наиболее распространенном элементе во вселенной - водороде.

Газообразный водород заправляют в бак автомобиля так же, как и бензин, а затем особый топливный элемент, производящий химическую реакцию за счет водорода и кислорода, преобразует электроэнергию, которая и является движущей силой машины. Что удивительно: единственным побочным продуктом этого процесса является вода.

avto4.jpg

Несомненно, Вы уже слышали про электромобили, которые далеко не могут уехать без подзарядки, а их максимальная скорость варьируется в пределах 70 км/ч. Однако Мирай на альтернативном виде топлива вне конкуренции.

avto3.jpg

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9.6 секунд и, самое главное, она способна проехать без дополнительной дозаправки 482 км. Ультрасовременные баки из углеродного волокна заполняются примерно за десять минут.

Читайте также: Автомобиль с ядерным двигателем: 8 грамм тория на миллионы километров

avto5.jpg

При упоминании водорода в качестве топлива некоторые люди могут вспомнить о немецком дирижабле Гинденбурга, который сгорел над штатом Нью-Джерси, США в 1937 году.

Однако конструкторы Toyota Mirai заверяют, что на данном автомобиле такая ситуация сведена на "нет" благодаря пуленепробиваемым резервуарам, в которых размещены водородные топливные элементы. Поэтому у обычного бензинового бака гораздо больше шансов быть взорванным в результате ДТП.

avto7.jpg

В целом авто имеет амбиции покорить весь мир. Но компании Toyota нужно спешить, ибо в следующем году Honda, Ford и Nissan планируют выпустить на рынок автомобили с похожими технологиями.

avto6.jpg

Если бы все автомобили ездили на водороде, то воздух в наших городах был бы намного чище. К тому же всем известен факт, что нефть на планете заканчивается, а, следовательно, рано или поздно бензин будет стоить безумно дорого (хотя и сейчас это уже не дешевое удовольствие).

Получается, что если все люди пересядут на такие автомобили, то человечество может сделать шаг к избавлению от проблем, связанных с загрязнениями окружающей среды.

Недостатки автомобиля на водороде

avto8.jpg

Но, конечно же, не все так радужно, как хотелось бы. Существуют серьезные проблемы, которые могут стать камнем преткновения на пути к альтернативе бензиновых двигателей.

1. В настоящее время автомобили на водороде очень дорогие. Мирай, четырехдверный седан, должен поступить в продажу за 99 700 долларов. В то время как стоимость автомобиля с бензиновым двигателем такого же класса составляет приблизительно 30 000 долларов.

2. Следующая проблема - это заправка автомобиля будущего. Вам нужно будет найти ближайшую водородную заправочную станцию, чтобы ехать после того, как бак опустеет, а в настоящее время таких АЗС единицы в некоторых европейских странах и США, в то время как в большинстве стран водородных АЗС вообще нет. Предположительно к 2020 году количество водородных заправочных станций увеличат в разы, но и этого будет совершенно недостаточно.

3. Заправка полного бака Toyota Mirai будет стоить около 103 доллара, что примерно в два раза больше, чем заправить автомобиль на бензиновом двигателе того же класса, который проезжает те же 482 км.

Субсидии для авто на водороде

avto9.jpg

Конечно, вопросы стоимости инфраструктуры могут быть частично решены правительствами, которые в состоянии создать стимулы: предоставлять покупателям различные скидки или даже обеспечивать людей заправкой водородом бесплатно.

Это уже происходит в Японии – в стране, где беспокоятся о своей энергетической безопасности (особенно после ядерной катастрофы на Фукусиме).

Правительство Японии очень помогает населению субсидиями на покупку водородных автомобилей (сумма субсидии составляет почти 27 000 долларов) в рамках программы, для которой выделят 400 млн. долларов из государственного бюджета.

С помощью данной программы планируется помочь населению Японии закупить 6 000 частных транспортных средств, работающих на водороде.

Между тем в США комитет энергетики штата Калифорния пообещал 205 млн. долларов для обеспечения почти 70 АЗС водородным топливом к концу следующего года. В Калифорнии также выплачивают 12 000 долларов тем, кто покупает автомобили на водороде.

avto10.jpg
А вот в Великобритании такие автомобили будут стоить дороже, по той простой причине, что технологические компании, как правило, "раздувают" там цены. На туманном Альбионе люди готовы платить за такой товар традиционно больше, нежели жители других продвинутых стран.

Британское правительство, со своей стороны, пообещало 17 млн. долларов для постройки еще 15 водородных станций на Юго-Востоке страны.

Производство водорода

avto12.jpg

Еще одной проблемой таких машин является производство водорода, так как это довольно проблематичное мероприятие.

Наиболее распространенный метод называется паровой реформинг. Он заключается в том, что пар смешивается с природным газом, затем нагревается до определенной температуры с последующим добавлением катализатора, такого как никель, в результате чего получается водород и моноксид углерода (ядовитый газ). Около 95 % водорода в мире производится этим путем.

К сожалению, это не экологически чистый процесс, потому что результатом являются и побочные продукты. Таким образом, хотя сам по себе водород в автомобиле не загрязняет окружающую среду, производство данного топлива будет загрязнять наш с Вами воздух.

В результате даже защитники автомобилей на водородном топливе признаются, что производство водорода будет загрязнять окружающую среду в лучшем случае как автомобили на бензиновых двигателях, а в худшем – значительно больше.

avto13.jpg
Ученые сейчас разрабатывают "зеленые методы" производства водорода, такие как извлечение водорода из кукурузной шелухи или использование ветряных турбин для питания электролиза воды.

В настоящее время не было придумано экологически чистых и достаточно эффективных методов производства водородного топлива для каждодневной заправки миллионов автомобилей.

Конечно же, поклонники автомобилей, работающих на водородном топливе, непреклонны: они уверены, что мы должны продвигаться вперед, ибо наше будущее зависит от работы автотранспорта, который не будет причинять ущерб нашей планете.

Проблемы водородных автомобилей

avto14.jpg

Компания Toyota утверждает, что Mirai выделяет всего 100 мл воды на примерно 2 км пути. Подсчитано, что, например, в Великобритании все автомобили проезжают около 488 млрд. км в год. Это означает, что если бы каждый автомобиль был бы Toyota Mirai, то утечка от всех автомобилей составила бы 3 млрд. л воды и водяного пара каждый год.

Читайте также: Автомобили на водородном топливе – будущее становится ближе

Для сравнения: такого огромного количества воды хватило бы, чтобы заполнить около 12 000 плавательных бассейнов, предназначенных для проведения олимпийских игр.

Конечно, вода сама по себе является безобидной для нас всех субстанцией, но только не для наших дорог во время морозов. Представьте себе автомагистраль с интенсивным движением в середине зимы, и с каждого транспортного средства выливается 1 литр воды каждые 20 км. Ведь вся эта вода превратится в каток в считанные минуты. А если вода выбрасывается в виде пара, то предсказуемый результат - туман.

По сообщениям, в городе Рейкьявик, Исландия, пассажиры автобусов на водородном топливе тревожатся о количестве водяного пара, который выходит только из одного автобуса из множества.

avto15.jpg

Таким образом, хотя водородные автомобили имеют массу преимуществ (например, беззвучность и экологичность), существует много проблем с ними, которые требуют решения, иначе такие машины будут не востребованы.

Возможно, водородные топливные элементы станут успешно использоваться, например, вилочными погрузчиками, работающими в закрытых помещениях, где бензиновый или дизельный дым особенно нежелательны.

Так что еще предстоит выяснить, будем ли мы все наслаждаться водородными семейными автомобилями в следующем десятилетии или нет...

Автомобиль на воде (видео)

Перевод: Лисицын Р. В.

www.infoniac.ru