Жидкости гидравлические: Гидравлические жидкости – как выбрать, на что обратить внимание

Гидравлические жидкости – как выбрать, на что обратить внимание

+7 499 394 47 95

+7 985 443 89 43

Search for

+7 499 394 47 95

+7 985 443 89 43

[email protected]

Главная » Блог » Что такое гидравлические жидкости?

Хотелось бы продолжить цикл статей о мире индустриальных масел и смазок, которые производит неемцкий завод Zeller+Gmelin GmbH & Co. KG материалом о том, что такое гидравлические жидкости и для чего они нужны, как используются.

Разработанные в принадлежащей заводу лаборатории и произведённые по новейшим технологиям, отвечающие всем требованиям (требования довольно жёсткие в постоянно и динамично развивающейся промышленности) рынка, а также стандартам и нормам всех основных институтов стандартизации трибологических жидкостей эти составы востребованны во многих отраслях промышленности, производства и услуг.

Самые основные и используемые «повседневно» практически на каждом производстве — это гидравлические жидкости.

Гидравлика осуществляет передачу энергии и сигналов через жидкости, для подачи энергии при осуществлении управления, привода и движения. Жидкости для гидравлических систем на основе минеральных масел, синтетические и огнестойкие жидкости применяются в машинах и оборудовании всех типов.

«Работают» гидравлические жидкости и гидравлика в гидростатических и гидродинамических системах. Гидростатической системе для передачи энергии требуется высокое давление при малой скорости течения, т.е. статическое давление, в данных системах работают так называемые гидравлические масла.

В гидродинамических системах используется уже кинетическая энергия, т.е. низкое давление, а скорость течения гидравлической жидкости высокая здесь работают энергопередающие жидкости.

Гидравлические жидкости как уже было сказано выше являются крупнейшей группой смазочных материалов в промышленности, на их долю приходится примерно 14% от общего объёма потребления всех трибологических жидкостей.

Современный «мир» гидравлики делится на 3 основные области:

  • стационарную,
  • мобильную,
  • авиационную.

Наш поставщик — завод Zeller+Gmelin производит стационарную и мобильную.

Из чего производится и как выбрать?

Давайте теперь перейдём к тому, а из чего же производится гидравлическая жидкость. В основном гидравлическая жидкость состоит из так называемого базового масла и химических веществ (присадок) повышающих конкретные функциональные характеристики.

Нужно понять, как же верно и правильно выбрать гидравлическую жидкость для агрегата. Выбор гидравлики зависит от условий, в которых она будет работать, основные из которых, это: диапазон рабочих температур, конструкция гидравлического узла, тип насоса, давление при работе и экологические соображения.

Давайте разобираться какую же вязкость гидравлического масла выбирать. С точки зрения текучести жидкости, вязкость должна быть как можно меньше. Чем ниже вязкость, тем более быстрее срабатывает гидравлика при запуске системы. Также минимальная вязкость снижает потери жидкости в гидравлическом контуре и гарантирует лучшую смазку, чем жидкости с более высокой вязкостью.

Выбирая гидравлическое масло необходимо учитывать, то что при малейшем изменении температуры в системе это сказывается на вязкости жидкости. В замкнутых системах где работает гидравлика нужно следить за температурой гидравлического контура. В тех же системах где гидравлика работает в «открытом режиме», нужно следить за температурой резервуара с жидкостью.

Максимальная температура работы гидравлической жидкости не должна превышать 90°С. В основном для большинства гидравлических контуров могут быть использованы классы вязкости 32, 46, 68 и 15, 22 для низких температур окружающей среды.

Стандарты гидравлических жидкостей

При выборе гидравлической жидкости можно руководствоваться стандартами от институтов стандартизации и их классификацией. Основные виды гидравлических жидкостей, которые являются гидравлическими маслами и подразделяются на следующие стандарты:

  • DIN 51824 – гидравлические масла
  • DIN 51502 – огнестойкие гидравлические жидкости
  • ISO 15380 (VDMA 24658) – биоразлагаемые гидравлические жидкости
  • NSF h2, h3 – гидравлические масла применяемые в пищевой промышленности
  • STOU и UTTO — универсальные гидравлические масла применяемые в мобильных системах (тракторы, экскаваторы и т.
    д.)

Подробнее рассмотрим стандарт немецкого института стандартизации (Deutsches Institut für Normung e.V.) DIN 51824 в следующей нашей публикации.

Divinol HLP ISO 46

Артикул: 48870

— гидравлическое масло высокого давления на минеральной основе в соответствии с требованиями DIN 51524 часть 2, HLP — вязкость: 46 мм²/с/40°C
— с антиокислительными и антикоррозионными агентами
— с добавками против износа и коррозии

Divinol HLP ISO 32

Артикул: 48861

— гидравлическое масло, высокого давления
— на основе минерального масла
— с антиокислительными и антикоррозионными агентами
— с добавками против износа и коррозии
— выполняет требования гидравлических масел в соответствии с DIN 51 524, часть 2, HLP

Divinol DHG ISO 68

Артикул: 84370

— очищающее и дисперсионное гидравлическое и трансмиссионное масло
— с превосходным смазывающим эффектом
— с высокой устойчивостью к старению
— с отличной защитой от износа и коррозии
— содержит цинк

Divinol DHG ISO 22

Артикул: 84310

— очищающее и дисперсионное гидравлическое масло
— с превосходным смазывающим эффектом
— с высокой устойчивостью к старению
— с отличной защитой от износа и коррозии
— содержит цинк

Divinol HLP ISO 68

Артикул: 48880

— гидравлическое масло высокого давления
— на основе минерального масла
— содержит антиокислительные и антикоррозионные агенты
— с присадками снижающими трение и износ
— отвечает требованиям гидравлических масел в соответствии с DIN 51524 часть 2, HLP

Вас заинтересуют

Ваш вопрос успешно отправлен. Спасибо!

Хотелось бы продолжить цикл статей о мире индустриальных масел и смазок, которые производит неемцкий завод Zeller+Gmelin GmbH & Co. KG материалом о том, что такое гидравлические жидкости и для чего они нужны, как используются.

Разработанные в принадлежащей заводу лаборатории и произведённые по новейшим технологиям, отвечающие всем требованиям (требования довольно жёсткие в постоянно и динамично развивающейся промышленности) рынка, а также стандартам и нормам всех основных институтов стандартизации трибологических жидкостей эти составы востребованны во многих отраслях промышленности, производства и услуг.

Самые основные и используемые «повседневно» практически на каждом производстве — это гидравлические жидкости.

Гидравлика осуществляет передачу энергии и сигналов через жидкости, для подачи энергии при осуществлении управления, привода и движения. Жидкости для гидравлических систем на основе минеральных масел, синтетические и огнестойкие жидкости применяются в машинах и оборудовании всех типов.

«Работают» гидравлические жидкости и гидравлика в гидростатических и гидродинамических системах. Гидростатической системе для передачи энергии требуется высокое давление при малой скорости течения, т.е. статическое давление, в данных системах работают так называемые гидравлические масла.

В гидродинамических системах используется уже кинетическая энергия, т.е. низкое давление, а скорость течения гидравлической жидкости высокая здесь работают энергопередающие жидкости.

Гидравлические жидкости как уже было сказано выше являются крупнейшей группой смазочных материалов в промышленности, на их долю приходится примерно 14% от общего объёма потребления всех трибологических жидкостей.

Современный «мир» гидравлики делится на 3 основные области:

  • стационарную,
  • мобильную,
  • авиационную.

Наш поставщик — завод Zeller+Gmelin производит стационарную и мобильную.

Из чего производится и как выбрать?

Давайте теперь перейдём к тому, а из чего же производится гидравлическая жидкость. В основном гидравлическая жидкость состоит из так называемого базового масла и химических веществ (присадок) повышающих конкретные функциональные характеристики.

Нужно понять, как же верно и правильно выбрать гидравлическую жидкость для агрегата. Выбор гидравлики зависит от условий, в которых она будет работать, основные из которых, это: диапазон рабочих температур, конструкция гидравлического узла, тип насоса, давление при работе и экологические соображения.

Давайте разобираться какую же вязкость гидравлического масла выбирать. С точки зрения текучести жидкости, вязкость должна быть как можно меньше. Чем ниже вязкость, тем более быстрее срабатывает гидравлика при запуске системы. Также минимальная вязкость снижает потери жидкости в гидравлическом контуре и гарантирует лучшую смазку, чем жидкости с более высокой вязкостью.

Выбирая гидравлическое масло необходимо учитывать, то что при малейшем изменении температуры в системе это сказывается на вязкости жидкости. В замкнутых системах где работает гидравлика нужно следить за температурой гидравлического контура. В тех же системах где гидравлика работает в «открытом режиме», нужно следить за температурой резервуара с жидкостью.

Максимальная температура работы гидравлической жидкости не должна превышать 90°С. В основном для большинства гидравлических контуров могут быть использованы классы вязкости 32, 46, 68 и 15, 22 для низких температур окружающей среды.

Стандарты гидравлических жидкостей

При выборе гидравлической жидкости можно руководствоваться стандартами от институтов стандартизации и их классификацией. Основные виды гидравлических жидкостей, которые являются гидравлическими маслами и подразделяются на следующие стандарты:

  • DIN 51824 – гидравлические масла
  • DIN 51502 – огнестойкие гидравлические жидкости
  • ISO 15380 (VDMA 24658) – биоразлагаемые гидравлические жидкости
  • NSF h2, h3 – гидравлические масла применяемые в пищевой промышленности
  • STOU и UTTO — универсальные гидравлические масла применяемые в мобильных системах (тракторы, экскаваторы и т. д.)

Подробнее рассмотрим стандарт немецкого института стандартизации (Deutsches Institut für Normung e.V.) DIN 51824 в следующей нашей публикации.

Гидравлические жидкости | это… Что такое Гидравлические жидкости?

        жидкости, применяемые в машинах и механизмах для передачи усилий (см. Гидравлическая передача, Гидравлический двигатель, Гидродинамическая передача и Гидропередача объёмная). Г. ж. должны обладать высокой стабильностью против окисления, малой вспениваемостью, инертностью к материалам деталей гидросистемы, пологой кривой вязкости, низкой температурой застывания и высокой температурой вспышки. Нефтехимическая промышленность выпускает более 20 сортов минеральных масел, используемых в гидравлических системах (см. табл.).

         В ряде случаев в качестве Г. ж. применяют некоторые индустриальные и моторные масла. Большинство Г. ж. содержит антиокислительные, антипенные и др. присадки.

         Свойства некоторых гидравлических жидкостей

        —————————————————————————————————————————————-

        | Жидкости                                               | Вязкость при 50°

 | tзаст, °С         | tвсп, °С        |

        |                                                               | С, м2/сек             |                     |                   |

        |————————————————————————————————————————————–|

        | Масло гидравлич.  для автоматич. линий | (25 — 35)•10-6*     | —10             | 190            |

        | металлорежущих станков                       |                            |                     |                   |

        |————————————————————————————————————————————–|

        | Масло для прессов                                | 1•10-7*                 | -15               | 200            |

        |————————————————————————————————————————————–|

        | Масло для гидравлич. передач               | (11-14) •10-6         | -28               | 165            |

        | тепловозов ГТ—50                                 |                            |                     |                   |

        |————————————————————————————————————————————–|

        | Масло для гидросистем автомобилей:   

 |                                                                      |

        |————————————————————————————————————————————–|

        | гидромеханич.  трансмиссий                   | (3,5-4) •10-6*         | -45               | 160            |

        |————————————————————————————————————————————–|

        | гидротрансформаторов и автоматич.      | (23-30) •10-6         | -40               | 175            |

        | коробок                                                  |                           

 |                     |                   |

        |————————————————————————————————————————————–|

        | гидроусилителя руля                              | (12-14) •10-6         | -45               | 163            |

        |————————————————————————————————————————————–|

        | Масло для высоконагруженных              | 20•10-6                 | -50               | 150            |

        | механизмов (ЭШ)                                   |                            |                     |                   |

        |————————————————————————————————————————————–|

        | Жидкость амортизаторная (АЖ-12Т)       | 12•10-6                 | -55               | 165            |

        |————————————————————————————————————————————–|

        | Жидкость гидротормозная (масло ГТН)  | 1•10-7                   | -63               | 92              |

        |————————————————————————————————————————————–|

        | Спирто-глицериновые жидкости:             |                                                                      |

        |————————————————————————————————————————————–|

        | СГ                                                          | 6,2•10-6                | -50               | 28              |

        |————————————————————————————————————————————–|

        | СВГ                                                        | 2,5•10-6                | -60               | 28              |

        |————————————————————————————————————————————–|

        | СВГ-2                                                     | 7,5•10-6                | -50               | 30              |

        |————————————————————————————————————————————–|

        | Спирто-касторовые жидкости:                |                                                                      |

        |————————————————————————————————————————————–|

        | ЭСК                                                       | (8,2-8,6) •10-6       | -25               | 12              |

        |————————————————————————————————————————————–|

        | БСК                                                       | (9,6-13,8) •10-6     | -25               | 14              |

        —————————————————————————————————————————————-

        

        * При 100°C.

         Лит.: Нефтепродукты. Справочник, под ред. Б. В. Лосикова, М., 1966; Моторные и реактивные масла и жидкости, под ред. К. К. Папок и Е. Г. Семенидо, 4 изд., [М., 1964].

         Н. Г. Пучков.

        

Что такое гидравлическая жидкость?

Джош Косфорд

Гидравлическая жидкость является средой передачи энергии во всех гидравлических системах. Однако работа гидравлической жидкости выходит за рамки простой передачи мощности. Хотя передача гидравлической энергии является основным назначением гидравлической жидкости, она полезна для четырех второстепенных функций: теплопередача, удаление загрязнений, уплотнение и смазка.

Гидравлические машины при нормальной работе выделяют много избыточного тепла, часто вызванного неэффективностью самих компонентов, таких как насосы и двигатели. Без возможности отвода тепла от этих компонентов они могут легко перегреться, что приведет к повреждению уплотнений и внутренних компонентов, особенно из-за низкой местной вязкости. Когда масло возвращается в резервуар, оно часто проходит через охладитель, чтобы поддерживать оптимальный температурный диапазон, прежде чем оно будет перекачано обратно в систему. И наоборот, гидравлическая жидкость может переносить тепло в систему во время холодного пуска, когда это необходимо.

 

Если бы гидравлические системы с замкнутым контуром не сбрасывали жидкость с контролируемой скоростью, загрязнение быстро накапливалось бы до критического и опасного уровня. Тепло можно считать формой загрязнения, но гидравлическая жидкость также уносит частицы и воду от чувствительных компонентов через фильтры или другие устройства кондиционирования, где они очищаются и возвращаются в контур. Нефть без импульса останется внутри чувствительных компонентов, что позволит захваченному загрязнению медленно разрушать окружающую среду.

Хотя большинство считает, что гидравлическое масло — это то, от чего герметизируются детали оборудования, такие как уплотнительные кольца или U-образные манжеты, гидравлическая жидкость (особенно масло) на самом деле обеспечивает герметизацию внутренних компонентов насосов, клапанов и двигателей. Золотниковый клапан, например, имеет уплотнение на каждом конце, чтобы предотвратить утечку масла из клапана, но каждая выемка на золотнике изолирована от соседних полостей только жесткими допусками на металл к металлу, а также поверхностным натяжением и сопротивлением масла. к стрижке.

В большинстве гидравлических компонентов требуется смазка для защиты внутренних деталей от износа или даже плавления в результате трения металла о металл. Масло обеспечивает полнослойную смазку между движущимися частями, такими как башмаки и линза поршневого насоса. Без смазывающих свойств масла гидравлические системы были бы ужасно неэффективными и ужасно ненадежными.

Эти функции гидравлической жидкости являются общими для всех типов, за исключением некоторых жидкостей на водной основе, которые требуют особых проектных соображений при проектировании. Тем не менее, в большинстве машин используется рафинированное или синтетическое масло, которое разработано и произведено в соответствии со специальными стандартами испытаний на важные свойства, такие как вязкость, температура застывания и индекс вязкости, и это лишь некоторые из них.

Эти три свойства часто учитываются при выборе жидкости для конкретного применения, которое основано на поддержании определенной вязкости при определенных условиях окружающей среды и эксплуатации машины. Например, если температура окружающей среды низкая, вы должны выбрать масло с более низкой номинальной вязкостью и низкой температурой застывания, т. е. при температуре, при которой масло все еще будет литься. Если ваша машина работает в различных температурных диапазонах, например всепогодная мобильная машина, очень важен высокий индекс вязкости, который описывает способность масла сохранять свою вязкость в широком диапазоне температур. Важно учитывать требования к вязкости компонентов вашей гидравлической системы. Для поршневого насоса, например, может потребоваться от 16 до 40 сантистоксов, что является описанием кинематической (т. е. измеренной во время потока) вязкости.

Гидравлическое масло разработано с другими важными свойствами, хотя они, как правило, являются общими, независимо от марки, вязкости или области применения. Гидравлическое масло имеет пакет химических присадок для улучшения работы как самого масла, так и компонентов гидравлической системы. Эти присадки могут улучшить стойкость масла к пенообразованию, его стойкость к коррозии/ржавчине и водоудерживающие свойства. Пакет присадок гидравлической жидкости — это то, что разделяет жидкости низкого и высокого качества, а присадки также улучшают вязкостные свойства масла. Если вы сомневаетесь, всегда выбирайте жидкость премиум-класса для вашего применения с вязкостью, соответствующей вашим условиям эксплуатации.

Рубрики: Основы инженерного дела

Обратные ссылки

    Гидравлические системы и выбор жидкостей

    Только в начале промышленной революции британский механик по имени Джозеф Брама применил принцип закона Паскаля при разработке первого гидравлического пресса. В 1795 году он запатентовал свой гидравлический пресс, известный как пресс Брама. Брама полагал, что если небольшая сила на небольшой площади создаст пропорционально большую силу на большей площади, единственным ограничением силы, которую может приложить машина, является площадь, на которую воздействует давление.

    Что такое гидравлическая система?

    Гидравлические системы сегодня можно найти в самых разных областях, от небольших сборочных процессов до комплексных применений на сталелитейных и бумажных фабриках. Гидравлика позволяет оператору выполнять значительную работу (подъем тяжестей, поворот вала, сверление прецизионных отверстий и т. д.) с минимальными затратами на механическую связь благодаря применению закона Паскаля, который гласит:

    «Давление, приложенное к замкнутой жидкости в любой точке, передается без уменьшения по всей жидкости во всех направлениях и действует на каждую часть ограничивающего сосуда под прямым углом к ​​его внутренним поверхностям и одинаково на равных площадях (рис. 1)».

    Рисунок 1 – Закон Паскаля

    Применяя закон Паскаля и его применение Брахмой, становится очевидным, что приложенная сила в 100 фунтов на 10 квадратных дюймов создаст давление 10 фунтов на квадратный дюйм во всем замкнутом сосуде. Это давление будет поддерживать вес в 1000 фунтов, если площадь веса составляет 100 квадратных дюймов.

    Принцип закона Паскаля реализуется в гидравлической системе с помощью гидравлической жидкости, которая используется для передачи энергии от одной точки к другой. Поскольку гидравлическая жидкость практически несжимаема, она способна мгновенно передавать мощность.

    Компоненты гидравлической системы

    Основными компонентами, составляющими гидравлическую систему, являются резервуар, насос, клапан(ы) и привод(ы) (двигатель, цилиндр и т. д.).

    Резервуар
    Назначение гидравлического резервуара состоит в том, чтобы удерживать объем жидкости, отводить тепло от системы, позволять твердым загрязнениям оседать и способствовать выпуску воздуха и влаги из жидкости.

    Насос
    Гидравлический насос преобразует механическую энергию в гидравлическую. Это делается за счет движения жидкости, которая является передающей средой. Существует несколько типов гидравлических насосов, включая шестеренчатые, лопастные и поршневые. Все эти насосы имеют разные подтипы, предназначенные для конкретных применений, таких как поршневой насос с изогнутой осью или лопастной насос переменной производительности. Все гидравлические насосы работают по одному и тому же принципу, который заключается в перемещении объема жидкости против сопротивления нагрузки или давления.

    Клапаны
    Гидравлические клапаны используются в системе для запуска, остановки и направления потока жидкости. Гидравлические клапаны состоят из тарелок или золотников и могут приводиться в действие с помощью пневматических, гидравлических, электрических, ручных или механических средств.

    Приводы
    Гидравлические приводы являются конечным результатом закона Паскаля. Здесь гидравлическая энергия преобразуется обратно в механическую энергию. Это можно сделать с помощью гидравлического цилиндра, который преобразует гидравлическую энергию в линейное движение и работу, или гидравлического двигателя, который преобразует гидравлическую энергию во вращательное движение и работу. Как и в случае с гидравлическими насосами, гидравлические цилиндры и гидромоторы имеют несколько различных подтипов, каждый из которых предназначен для конкретных конструктивных применений.

    Основные смазываемые гидравлические компоненты

    В гидравлической системе есть несколько компонентов, которые считаются жизненно важными из-за стоимости ремонта или важности задачи, включая насосы и клапаны. Несколько различных конфигураций насосов необходимо рассматривать отдельно с точки зрения смазки. Однако, независимо от конфигурации насоса, выбранный смазочный материал должен препятствовать коррозии, соответствовать требованиям по вязкости, обладать термической стабильностью и быть легко идентифицируемым (в случае утечки).

    Лопастные насосы
    Существует множество вариантов лопастных насосов разных производителей. Все они работают по схожим принципам проектирования. Щелевой ротор соединен с приводным валом и вращается внутри кулачкового кольца, смещенного или эксцентричного по отношению к приводному валу. Лопасти вставляются в пазы ротора и следуют за внутренней поверхностью кулачкового кольца при вращении ротора.

    Лопасти и внутренняя поверхность кулачковых колец всегда соприкасаются и подвержены сильному износу. По мере износа двух поверхностей лопасти выходят из своего паза. Лопастные насосы обеспечивают стабильный поток при высокой стоимости. Лопастные насосы работают в нормальном диапазоне вязкости от 14 до 160 сСт при рабочей температуре. Лопастные насосы могут не подходить для ответственных гидравлических систем высокого давления, где трудно контролировать загрязнение и качество жидкости. Эффективность противоизносной присадки к жидкости, как правило, очень важна для лопастных насосов.

    Поршневые насосы
    Как и все гидравлические насосы, поршневые насосы доступны в конструкциях с фиксированным и переменным рабочим объемом. Поршневые насосы, как правило, являются наиболее универсальным и прочным типом насосов и предлагают ряд вариантов для любого типа системы. Поршневые насосы могут работать при давлении выше 6000 фунтов на квадратный дюйм, очень эффективны и производят сравнительно мало шума. Многие конструкции поршневых насосов также имеют тенденцию противостоять износу лучше, чем другие типы насосов. Поршневые насосы работают в диапазоне нормальной вязкости жидкости от 10 до 160 сСт.

    Шестеренчатые насосы
    Существует два распространенных типа шестеренчатых насосов: внутренние и внешние. Каждый тип имеет множество подтипов, но все они развивают поток, перенося жидкость между зубьями зубчатого зацепления. Шестеренчатые насосы, как правило, менее эффективны, чем лопастные и поршневые, но часто более устойчивы к загрязнению жидкости.

    1. Шестеренчатые насосы с внутренним зацеплением создают давление от 3000 до 3500 фунтов на квадратный дюйм. Эти типы насосов предлагают широкий диапазон вязкости до 2200 сСт, в зависимости от расхода и, как правило, работают тихо. Шестеренчатые насосы с внутренним зацеплением также обладают высокой эффективностью даже при низкой вязкости жидкости.

    2. Насосы с внешним зацеплением распространены и могут выдерживать давление от 3000 до 3500 фунтов на квадратный дюйм. Эти шестеренчатые насосы обеспечивают недорогую подачу в систему со средним давлением, средним объемом и фиксированным положением. Диапазоны вязкости для этих типов насосов не превышают 300 сСт.

    Гидравлические жидкости
    Современные гидравлические жидкости служат нескольким целям. Основной функцией гидравлической жидкости является обеспечение передачи энергии через систему, которая позволяет выполнять работу и движение. Гидравлические жидкости также отвечают за смазку, теплопередачу и контроль загрязнения. При выборе смазочного материала учитывайте вязкость, совместимость с уплотнениями, базовое масло и пакет присадок. На сегодняшний день на рынке представлены три основных разновидности гидравлических жидкостей: на нефтяной основе, на водной основе и на синтетической основе.

    1. Жидкости на нефтяной или минеральной основе в настоящее время являются наиболее широко используемыми жидкостями. Эти жидкости предлагают недорогой, высококачественный и легко доступный выбор. Свойства жидкости на минеральной основе зависят от используемых присадок, качества исходной сырой нефти и процесса очистки. Присадки в жидкости на минеральной основе обеспечивают ряд специфических эксплуатационных характеристик. Обычные присадки к гидравлическим жидкостям включают ингибиторы ржавчины и окисления (R&O), антикоррозионные присадки, деэмульгаторы, противоизносные (AW) и противозадирные (EP) присадки, присадки для улучшения индекса вязкости и пеногасители. Кроме того, некоторые из этих смазочных материалов содержат цветные красители, что позволяет легко определять утечки. Поскольку гидравлические утечки очень дороги (и распространены), эта незначительная характеристика играет огромную роль в продлении срока службы вашего оборудования и экономии денег и ресурсов вашего завода.

    2. Жидкости на водной основе используются для обеспечения огнестойкости из-за высокого содержания воды. Они доступны в виде эмульсий масло-в-воде, эмульсий вода-в-масле (обратных) и водно-гликолевых смесей. Жидкости на водной основе могут обеспечить подходящие смазочные характеристики, но их необходимо тщательно контролировать, чтобы избежать проблем. Поскольку жидкости на водной основе используются там, где требуется огнестойкость, эти системы и атмосфера вокруг них могут быть горячими.

      Повышенные температуры вызывают испарение воды из жидкостей, что приводит к повышению вязкости. Иногда в систему необходимо добавлять дистиллированную воду, чтобы скорректировать баланс жидкости. Всякий раз, когда используются эти жидкости, несколько компонентов системы должны быть проверены на совместимость, включая насосы, фильтры, водопровод, фитинги и уплотнительные материалы.

      Жидкости на водной основе могут быть более дорогими, чем обычные жидкости на нефтяной основе, и иметь другие недостатки (например, более низкую износостойкость), которые необходимо сопоставлять с преимуществом огнестойкости.

    3. Синтетические жидкости представляют собой искусственные смазочные материалы, и многие из них обладают превосходными смазывающими свойствами в системах высокого давления и высоких температур. Некоторые из преимуществ синтетических жидкостей могут включать огнестойкость (эфиры фосфорной кислоты), более низкое трение, естественные моющие свойства (органические сложные эфиры и синтетические углеводородные жидкости с улучшенным содержанием сложных эфиров) и термическую стабильность.

      Недостатком этих типов жидкостей является то, что они обычно дороже обычных жидкостей, могут быть слегка токсичными и требуют специальной утилизации, а также часто несовместимы со стандартными материалами уплотнений.

    Свойства жидкости
    При выборе гидравлической жидкости учитывайте следующие характеристики: вязкость, индекс вязкости, устойчивость к окислению и износостойкость. Эти характеристики будут определять, как ваша жидкость работает в вашей системе. Проверка свойств жидкости проводится в соответствии с требованиями Американского общества испытаний и материалов (ASTM) или других признанных организаций по стандартизации.

    1. Вязкость (ASTM D445-97) является мерой сопротивления жидкости течению и сдвигу. Жидкость с более высокой вязкостью будет течь с большим сопротивлением по сравнению с жидкостью с низкой вязкостью. Чрезмерно высокая вязкость может способствовать повышению температуры жидкости и увеличению потребления энергии. Слишком высокая или слишком низкая вязкость может повредить систему и, следовательно, является ключевым фактором при выборе гидравлической жидкости.

    2. Индекс вязкости (ASTM D2270) — это то, как вязкость жидкости изменяется при изменении температуры. Жидкость с высоким индексом вязкости будет сохранять свою вязкость в более широком диапазоне температур, чем жидкость с низким индексом вязкости того же веса. Жидкости с высоким индексом вязкости используются там, где ожидаются экстремальные температуры. Это особенно важно для гидравлических систем, работающих вне помещений.

    3. Окислительная стабильность (ASTM D2272 и другие) — это устойчивость жидкости к термическому разложению, вызванному химической реакцией с кислородом. Окисление значительно сокращает срок службы жидкости, оставляя побочные продукты, такие как шлам и лак. Лак мешает работе клапана и может сужать пути потока.

    4. Износостойкость (ASTM D2266 и др.) — способность смазки снижать скорость изнашивания в граничных фрикционных контактах. Это достигается за счет того, что жидкость образует на металлических поверхностях защитную пленку, предотвращающую истирание, истирание и контактную усталость на поверхностях компонентов.

    Помимо этих фундаментальных характеристик, еще одним свойством, которое следует учитывать, является видимость. Если когда-нибудь произойдет утечка в гидравлической системе, вы должны обнаружить ее как можно раньше, чтобы не повредить свое оборудование. Выбор окрашенной смазки может помочь вам быстро обнаружить утечки, эффективно спасая ваше предприятие от поломки машины.

    Десять шагов для проверки оптимального диапазона вязкости

    При выборе смазочных материалов убедитесь, что они эффективно работают при рабочих параметрах системного насоса или двигателя. Полезно иметь определенную процедуру для выполнения процесса. Рассмотрим простую систему с шестеренчатым насосом постоянного рабочего объема, который приводит в движение цилиндр (рис. 2).

    1. Соберите все необходимые данные для насоса. Сюда входит получение от производителя всех конструктивных ограничений и оптимальных рабочих характеристик. Вам нужен оптимальный диапазон рабочей вязкости для данного насоса. Минимальная вязкость 13 сСт, максимальная вязкость 54 сСт, оптимальная вязкость 23 сСт.

    2. Проверьте фактическую рабочую температуру насоса во время нормальной работы. Этот шаг чрезвычайно важен, потому что он дает точку отсчета для сравнения различных жидкостей во время работы. Насос нормально работает на 92ºС.

    3. Соберите температурно-вязкостные характеристики используемого смазочного материала. Рекомендуется использовать систему оценки вязкости ISO (сСт при 40ºC и 100ºC). Вязкость составляет 32 сСт при 40ºC и 5,1 сСт при 100ºC.

    4. Получите стандартную диаграмму вязкости-температуры ASTM D341 для жидких нефтепродуктов. Эта таблица довольно распространена, ее можно найти в большинстве руководств по промышленным смазочным материалам (рис. 3) или у поставщиков смазочных материалов.

    5. Используя характеристики вязкости смазочного материала, полученные на шаге 3, начните с оси температуры (ось x) диаграммы и прокручивайте ее, пока не найдете линию 40 градусов C. На линии 40°C двигайтесь вверх, пока не найдете линию, соответствующую вязкости вашего смазочного материала при 40°C, как указано производителем вашего смазочного материала. Когда вы найдете соответствующую линию, сделайте небольшую отметку на пересечении двух линий (красные линии, рис. 5).

    6. Повторите шаг 5 для свойств смазки при 100ºC и отметьте точку пересечения (темно-синяя линия, рис. 5).

    7. Соедините метки, проведя через них линию линейкой (желтая линия, рис. 5). Эта линия представляет собой вязкость смазки в диапазоне температур.

    8. Используя данные производителя для оптимальной рабочей вязкости насоса, найдите значение на вертикальной оси вязкости диаграммы. Нарисуйте горизонтальную линию на странице, пока она не совпадет с желтой линией зависимости вязкости от температуры смазочного материала. Теперь проведите вертикальную линию (зеленая линия, рис. 5) к нижней части графика от желтой линии зависимости вязкости от температуры в том месте, где она пересекается с горизонтальной линией оптимальной вязкости. Там, где эта линия пересекается, температурная ось представляет собой оптимальную рабочую температуру насоса для данного конкретного смазочного материала (69ºС).

    9. Повторите шаг 8 для максимальной непрерывной и минимальной непрерывной вязкости насоса (коричневые линии, рис. 5). Область между минимальной и максимальной температурами является минимальной и максимальной допустимой рабочей температурой насоса для выбранного смазочного продукта.

    10. Найдите нормальную рабочую температуру насоса на графике, используя сканирование тепловой пушки, выполненное на шаге 2. Если значение находится в пределах минимальной и максимальной температуры, указанных на графике, жидкость пригодна для использования в системе. Если это не так, вы должны заменить жидкость на более высокую или более низкую вязкость соответственно. Как показано на диаграмме, нормальные рабочие условия насоса выходят за пределы подходящего диапазона (коричневая область, рис. 5) для нашего конкретного смазочного материала и должны быть изменены.

    Консолидация гидравлических жидкостей

    Цель консолидации гидравлической жидкости состоит в том, чтобы уменьшить сложность и объем складских запасов. Необходимо соблюдать осторожность при рассмотрении всех критических характеристик жидкости, необходимых для каждой системы. Следовательно, консолидация жидкости должна начинаться на системном уровне. При объединении жидкостей учитывайте следующее:

    • Определите конкретные требования к каждой единице оборудования. Учитывайте все нормальные эксплуатационные ограничения вашего оборудования.

    • Поговорите с вашим представителем по смазочным материалам. Вы можете собирать и передавать важную информацию о потребностях вашего оборудования в смазке. Это гарантирует, что у вашего поставщика есть все продукты, которые вам нужны. Не жертвуйте системными требованиями ради консолидации.

    Кроме того, соблюдайте следующие правила обращения с гидравлической жидкостью.

    • Внедрите процедуру маркировки всех поступающих смазочных материалов и маркировки всех резервуаров. Это сведет к минимуму перекрестное загрязнение и обеспечит выполнение критических требований к производительности.