Укладчик кирпича робот: Робот укладчик кирпича

Робот для укладки кирпича на поддоны FANUC M-900iB/360. Робот-укладчик кирпича. Паллетирование кирпичей роботом

АЛЬФА ИНЖИНИРИНГ: Робот для укладки кирпича на поддоны FANUC M-900iB/360. Робот-укладчик кирпича. Паллетирование кирпичей роботом
  • Главная
  • Проекты
  • Промышленные роботы
  • Робототехнический комплекс для паллетирования гиперпрессованных кирпичей на технологические поддоны

Робототехнический комплекс (РТК) «ROBOMATIC M-900iB/360» предназначен для выполнения в автоматическом режиме процесса укладки гиперпрессованных кирпичей (ГПК) на технологические поддоны для дальнейшей обработки.

 Принцип работы

Процесс укладки включает следующие этапы:

  1. Забор ГПК из пресса роботом-манипулятором FANUC М-900iB/360 при помощи пневмомеханического захватного устройства.

  2. Перемещение ГПК к месту укладки. В процессе перемещения кирпичи в захватном устройстве сдвигаются, формируя готовую часть слоя для укладки

  3. Укладка ГПК на один из двух технологических поддонов согласно шаблону раскладки. Стандартно на поддон укладывается 6 слоев ГПК, каждый из которых состоит из 4 рядов по 10 кирпичей в каждом. После окончания укладки выдается сигнал о готовности поддона с продукцией (зеленый свет).

  4. Забор готового технологического поддона при помощи вилочного погрузчика

  5. Установка на место загрузки пустого поддона и подтверждение его готовности. Над местом укладки загорается запрещающий сигнал (красный свет), после чего цикл укладки повторяется.

 Комплект поставки

Робот-манипулятор FANUC M-900iB/360
1
Контроллер робота FANUC R-30iB Plus
1
Шкаф управления РТК
1
Захватное устройство для перемещения ГПК
1
Набор пневматических комплектующих (блок подготовки воздуха, пневмоклапаны, пневмошланги и пр.)
1
Набор электрических комплектующих (сигнальную колонна со звуковым модулем, кнопочные посты, светофоры, кабели и пр. )
1

 Состав комплекса

1 Робот-манипулятор FANUC M-900iB/360
1 шт
2 Контроллер манипулятора FANUC R-30iB Plus
1 шт
3 Захватное устройство для перемещения кирпичей
1 шт
4 Позиционеры для технологических поддонов    1 шт
5 Шкаф управления РТК
1 шт
6 Система индикации РТК
1 компл.

 Робот-манипулятор FANUC M-900iВ/360
Робот-манипулятор с шестью степенями свободы. Осуществляет перемещение ГПК при помощи захватного устройства, установленного на фланце 6-ой оси. 


 Параметр Значение


 Модель манипулятора FANUC M-900iB/360
 Количество степеней свободы 6
 Максимальная   грузоподъемность, кг 360
 Повторяемость, мм ± 0,1
 Вес механической части, кг 1540
 Радиус досягаемости, мм 2655
 Угол поворота оси, градус               J1 370
J2 151
J3 224
J4 720
J5
250
J6
720
 Угловая скорость оси, градус/с                
J1
110
J2
105
J3
100
J4
110
J5
110
J6
180
 Класс защиты от пыли и  влаги корпус – IP54, запястье – IP67

 Контроллер манипулятора FANUC R-30iB Plus
Осуществляет управление роботом-манипулятором FANUC M-900iB/360 согласно заданной программе.
Комплектуется пультом управления iPendant, используемым для составления и редактирования программ, а также для ручного управления роботом.


Параметр Значение


Модель контроллера FANUC R-30iB Plus
Максимальное количество   контролируемых осей
40
Вес контроллера, кг
120
Габаритные размеры, ДхШхВ, мм
600х500х470
Длина кабеля пульта управления, м
10
Параметры электропитания 3 фазы, перем. ток 380В / 50 Гц
Подключаемая электрическая мощность, кВт (с учетом механической части) 
15
Средняя потребляемая  электрическая мощность, кВт (с учетом механической части)
3
 Класс защиты от пыли и влаги IP54

 Захватное устройство для перемещения кирпичей

   Преимущества
   
 
 Надежное сжатие, исключающее падение кирпичей.
 
 Аккуратный захват кирпичей без их повреждения.
 
 Уменьшенная общая масса схватывающего устройства за счет использования в конструкции рамы алюминиевого профиля.
 
 Продуманная и надежная конструкция с минимумом возможных поломок.
   В схвате используются пневмоприводы как с воздушным демпфированием, так и без. Демпфирование предназначено для обеспечения плавности работы пневматических приводов в конечных точках.
   Компьютерный расчет прочностных характеристик и компьютерное моделирование работы (с учетом динамических нагрузок) гарантирует продолжительный срок эксплуатации захватного устройства.
   Удобное электрическое подключение через разъем руки робота.



Фотогалерея

Сотрудник
Наши специалисты ответят на любой интересующий вопрос по проекту

Задать вопрос

автоматизация процесса кирпичной кладки – Основные средства

Несмотря на появление все новых и новых строительных материалов старый добрый кирпич, известный тысячи лет, не сходит со сцены — он по-прежнему широко используется. Но укладка кирпича до сих пор не поддавалась автоматизации и как и тысячи лет назад является трудоемкой ручной работой, которая в век электронных технологий выглядит анахронизмом. Поэтому не удивительно, что в ряде стран проводятся исследования по автоматизации процесса кирпичной кладки. Основная сложность состоит в большом разнообразии и неупорядоченности необходимых для этого действий.

SAM100

Американская компания Construction Robotics разработала модель полуавтоматического робота-каменщика SAM100 (Semi-Automated Mason – «полуавтоматический каменщик»). Робот состоит из манипулятора-укладчика и системы нанесения цементного раствора. Работа SAM100 выглядит абсолютно фантастически — машина «рукой» берет кирпичи, наносит на них раствор и ловко укладывает на стену. Компании удалось создать машину, достаточно легкую для того, чтобы располагаться на стандартных строительных лесах и передвигаться по ним вдоль стены, либо на рабочей площадке подъемника – эксплуатационная масса робота 1500 кг. Машина оснащена собственным дизель-генератором с двигателем Cummins, работающем на газе.

В программном обеспечении системы управления роботом SAM использованы инновационные разработки, в частности программа «картографирования» кирпичной кладки, в которую можно в цифровом виде загрузить схему расположения стены и кирпичей в ней и привязать к координатам GPS/ГЛОНАСС. Программу можно корректировать в зависимости от изменения реальных условий на строительном объекте. Когда корректируется вся конструкция, соответственно, уточняется и положение каждого кирпича в кладке. Таким образом строительный проект точно соответствует всем реальным размерам и ограничениям, существующим на практике. 

К тому же, такая предварительная проработка проекта в виде электронной программы позволяет представить его клиенту средствами компьютерной графики. Заказчик сможет наглядно увидеть, как будет выглядеть кирпичная кладка стен, оценить различные варианты расцветки или, например, увидеть, как будет выглядеть логотип компании, выложенный на стене кирпичами. Имеются программные средства, позволяющие загружать в программу управления кладкой в цифровом виде логотипы и другие изображения на стене. Также программа позволяет рассчитать, сколько кирпичей понадобится распилить и сколько времени потребуется для возведения данной стены. Вся эта информация может быть получена предварительно, при укладке же кирпичей по традиционной технологии вручную такие данные как правило получить невозможно.

Раньше возведение кирпичной стены с оконными и дверными проемами, которые усложняли работу, занимало немалое время. Требовались целые часы для проведения многочисленных замеров и расчетов, чтобы определить, как для этого следует распилить кирпичи. Теперь же в электронную программу управления робота закладывается схема расположения кирпичей в стене и на экране компьютера можно увидеть ее изображение. Программа в течение нескольких минут рассчитывает, как будет выкладываться кирпичная стена. Вместо замеров, которые каменщик производит вручную в процессе работы, все расчеты выполняет электроника, выложенная роботом кирпичная стена выглядит лучше и требуется пилить меньшее количество кирпичей. То есть, разница такая же, как в случае проведения расчетов на бумаге и на компьютере. Электронное управление позволяет точнее планировать работы, что в свою очередь повышает производительность и рентабельность работ.

Человек-каменщик в процессе работы не наткнется на других рабочих, находящихся на мостках рядом с ним и может скорректировать свое поведение, например, если внезапно поднимется сильный ветер. Создателям пришлось обеспечить роботу возможности решать все эти задачи. Два года ушло только на то, чтобы «научить» робота наносить раствор на кирпич! Датчики системы безопасности не позволят машине упасть с подмостьев и наткнуться на препятствия.

Однако, робот превосходит человека в точности укладки (SAM100 выравнивает кладку по лучу лазера), не устает и сохраняет уровень качества работы как угодно долго. Опытный каменщик может превзойти этого робота в скорости и качестве укладки, но только в течение короткого времени. Затем человек неизбежно устанет, а робот продолжит работу как ни в чем не бывало.

Для обеспечения работы SAM100 требуется три человека: оператор, помощник, подающий в машину кирпичи и раствор, а также каменщик, устанавливающий в стену закладные анкеры, зачищающий лишний раствор и исправляющий мелкие дефекты в кладке. По расчетам компании при применении робота производительность кладки кирпичной стены увеличивается в 3-5 раз, стоимость уменьшается до 50% плюс экономия на оплате труда рабочих. Укладка одного кирпича занимает 12-14 сек в зависимости от его размеров. Такой темп создатели признали оптимальным, т. к. если скорость кладки увеличить, роботу потребуется уже два помощника, подносящих кирпичи и раствор. Строители, познакомившиеся с работой робота-каменщика, дали ему высокие оценки. Заявленная рыночная стоимость SAM100 — US$650000. Компания оценивает период окупаемости робота в 1-2 года.

Construction Robotics продолжает работы по совершенствованию робота-каменщика. Как сказал один из разработчиков машины: «SAM100 создан не для того, чтобы полностью заменить каменщиков-людей. Как и при традиционном способе укладки, требуется каменщик и помощник для подноски кирпича и раствора. Сейчас в строительной отрасли не хватает квалифицированных каменщиков и SAM100 создан, чтобы помочь справиться с этим дефицитом». Следует отметить, что SAM100 – единственная известная коммерческая модель робота-каменщика в мире, все прочие разработки пока находятся на стадии опытных образцов и прототипов.

Робот-носильщик

А вот исследователи из Университета в г. Баффало (США) сконструировали робота-носильщика OSCR-3, который помогает поднимать и переносить кирпичи и строительные блоки по лестницам и этажам.

Hadrian X

В Австралии компания Fastbrick Robotics разработала робот Hadrian X, который способен уложить 1000 кирпичей за час, скрепляя раствором — это в 20 раз быстрее человека-каменщика. Hadrian X работает под управлением электронной системы, в которую загружен проект постройки в цифровом 3-мерном виде. Главной частью машины является смонтированная на автомобильном шасси телескопическая стрела высотой в 28 м, с помощью которой она и выполняет свою работу. Стрела может корректировать положение до 1000 раз в секунду, компенсируя влияние порывов ветра и прочих природных факторов. Для возведения стен необходимо загрузить лотки с кирпичом на платформу Hadrian.

Сейчас в Австралии средний возраст каменщиков — 50 лет и робот-каменщик поможет устранить дефицит работников этой профессии. Компания планирует выпустить своего робота на рынок к концу 2017 г. На его разработку было затрачено $7 млн., поэтому низкой его цена не будет, по крайней мере в первое время.

In-Situ Fabricator

Швейцарские исследователи также ведут работы по созданию робота, укладывающего кирпичи, который мог бы адаптироваться к изменениям обстановки на стройке и самостоятельно обучаться в процессе работы, основывая свои действия на бортовой системе «органов чувств» с электронным управлением, не нуждаясь во вмешательстве в управление человека.

In-Situ Fabricator (IF, «Строит здесь и сейчас») создан группой архитекторов и робототехников из Федерального технологического института в Цюрихе (ETH Zurich). Робот имеет сравнительно небольшую массу, мобилен и самое главное, обладает «интеллектом». Он оснащен двумя компьютерами, один из которых отвечает за движения механической «руки»-манипулятора, а другой — за ориентирование. Манипулятор оборудован лазерным дальномером. При перемещении манипулятора дальномер сканирует пространство вокруг робота и строит 3-мерную схему окружающего пространства. Также в бортовую систему управления загружена цифровая модель постройки. Благодаря этим данным робот постоянно определяет свое положение в изменяющейся обстановке и ориентируется при выполнении строительных операций, что создает возможности для его автономной работы, которую он выполняет с точностью до миллиметра. Еще одним преимуществом IF является способность самостоятельно перемещаться по строительной площадке без помощи человека. Робот оснащен датчиками и камерами, которые позволяют ему не натыкаться на препятствия и людей во время движения.

Главным его достоинством, как считают разработчики, является способность адаптироваться и решать задачи при внезапных нестандартных изменениях обстановки на строительном объекте. Они считают, что это одна из первых машин, которая способна возводить нестандартные постройки, то есть проект которых может изменяться и адаптироваться к окружающим условиям непосредственно в процессе строительства. Исследователи продолжают работу по совершенствованию IF, т. к. по словам разработчиков действия робота пока «примитивны», он как бы «работает вслепую». Робот пока еще неуверенно и медленно ориентируется в обстановке после совершения каждого действия, чтобы полноценно выполнять работу с необходимой точностью, в будущем он должен ориентироваться с большой скоростью и прямо в процессе движения.

Роботы-муравьи

Интересную работу с оригинальным подходом к решению проблемы автоматизации процесса строительства из кирпичей ведет группа ученых в Гарвардской школе техники и прикладных наук (SEAS). Вы никогда не задумывались как муравьям удается выстроить свой дом? Ведь у них нет ни центрального руководства, ни общего плана постройки, они даже не распределяют обязанности между собой и не общаются друг с другом, в процессе строительства не знают, в каком состоянии находится в данный момент строящийся объект. Насекомые действуют по принципу, который называется «стигмергия» (stigmergy, «стигмержи» или «муравьиный алгоритм»): особь наблюдает, какие изменения внесли в окружающую среду другие особи и действует, исходя из этого. Муравей просто несет кусок глины или песчинку к месту, куда его нужно уложить, и если это место оказывается уже занятым — несет к следующему. Тысячи маленьких тружеников рождаются и умирают, воды и ветры наносят ущерб постройке, но строительство успешно продолжается, и муравейник растет, не разрушаясь.

Исследователи из Гарварда построили программу TERMES («термиты») на принципах «муравьиного алгоритма», которая позволяет большой группе роботов действовать как колонии муравьев, и получили впечатляющие результаты: на демонстрации группа роботов слаженно возводила сложные трехмерные сооружения. Роботы строили ступени, взбираясь по ним, чтобы продолжать строительство, знали, куда нужно положить очередной кирпич и как его закрепить, следуя простому правилу, согласно которому каждый укладывает кирпич на первое же доступное место, чтобы сооружение росло, при этом не создавая препятствий для соседей и хода строительства, и даже восстанавливали постройку после внезапных изменений в обстановке и ее состоянии (часть постройки нарочно разрушали). Каждый робот участвовал в строительстве параллельно с другими, но не знал при этом, кто из «коллег» и что делает в этот момент. Если робот выходил из строя или должен был покинуть стройку по каким-либо причинам, это не оказывало никакого влияния на других. После постановки первоначальной задачи коллектив роботов больше не требует вмешательства человека в процесс строительства. Одну и ту же программу могут выполнять и пять, и пятьсот роботов.

Исследователи стремились создать систему максимально простую, дешевую и надежную. Бортовые электронные системы управления роботов получились достаточно простыми. У этих бюджетных «роботов-коллективистов» – т. н. «килоботов» имеется всего четыре типа простых датчиков и три привода-актюатора.

Технические возможности системы TERMES пока еще ограничены, но, как утверждают авторы, уже сейчас роботизированная система может выполнять задачи по укладке заграждений из мешков с песком при наводнениях или выполнять несложные строительные работы на Марсе.

Летающие роботы-строители

В отличие от системы TERMES работа других современных роботизированных систем управляется центральным блоком управления-контроллером либо все роботы должны иметь способность общаться друг с другом, согласовывая свои действия.

«Институт динамических систем и управления» (Institute for Dynamic Systems and Control) в Цюрихе (Швейцария) разработал концепцию «Летающих роботов» (Flying Machine Arena), которые можно использовать для возведения построек из кирпичей или блоков в автономном режиме — без вмешательства человека в процесс строительства. Система может управлять разными летательными аппаратами, но были выбраны квадрокоптеры за их маневренность, простоту механического устройства, надежность и прочность, а также способность неподвижно парить в воздухе. Квадрокоптеры оснащены бортовой электронной системой управления, гиродатчиком угловой скорости и акселерометром. Кирпичи удерживаются специальным захватом из трех штифтов с сервоприводом.

От того, насколько точно и надежно будут уложены кирпичи, зависит успех строительства. Исследования показали, что самый точный и надежный способ укладки кирпичей — доставка их по воздуху и укладка без использования силы тяготения. Квадрокоптер подносит кирпич к строению и рассчитывает траекторию, по которой кирпич будет уложен в кладку при заданной скорости. Исследования показали, что чем меньше скорость, с которой кирпич подлетает к кладке (и соответственно слабее удар при укладке), тем больше оказывает влияние на точность траектории турбуленции в воздухе и воздействие силы тяготения. Поэтому предпочтительно укладывать кирпичи с достаточно высокой скоростью, без лишней «осторожности».

Способность группы летательных аппаратов-роботов строить сооружения была продемонстрирована на практике: построена модель в масштабе 1:100 инновационной жилой башни высотой в 600 м со 180-ю этажами и общей площадью в 1,3 млн м2 для проживания 30 000 человек – реальный архитектурный проект «автономного дома будущего» Строительная конструкция высотой 6 м состояла из 1500 блоков-кирпичей. Четыре квадрокоптера возводили ее в течение 4-х дней.

Программа управления контролировала траектории полетов, исключая столкновения машин: перед тем, как квадрокоптер совершит маневр, система резервирует свободное пространство для этого, чтобы на его пути не оказалась другая машина, и система не допускает в зарезервированное пространство другие машины до окончания маневра. Система предотвращает столкновения квардрокоптеров с возводимым строением — т. е. всё пространство, которое занимает башня, считается «зарезервированным» и квадрокоптеры не могут проложить через него маршруты своих полетов.

Система по беспроводной связи управляла операциями захвата и укладки кирпичей и всей динамикой полетов — скоростями и маневрами, позволяла определять количество участвующих в строительстве летающих роботов в каждый конкретный момент и темп укладки кирпичей (кирпичей/час), обновляла информацию о пространственном расположении объектов со скоростью более 200 раз в сек. Это не выглядит слишком много, если учесть, что объекты в этом пространстве могут летать со скоростями быстрее 10 м/сек, т.  е. между двумя «картинками» они уже могут переместиться на расстояние свыше 5 см. Система координировала, в какое время машины осуществляли подзарядку аккумуляторов.

Следует отметить, что подобные системы позволяют повысить производительность работы группы роботов и быстро преодолевать возникающие в процессе работы проблемы, но с увеличением количества роботов и территории их деятельности управлять централизованными системами становится все сложнее, а центральный контроллер представляет собой то единственное слабое звено, выход из строя которого нарушит работу сразу всей системы.

FlexBrick

Компания ROB Technologies AG, специализирующаяся на создании программного обеспечения и имеющая отделения в нескольких странах, разрабатывает FlexBrick — пакет компьютерных программ для управления роботизированной укладкой кирпичей в нестандартном порядке — для украшения фасадов зданий, интерьеров и т. п. Роботизированная укладка FlexBrick уже применялась при строительстве ряда зданий и сооружений в Швейцарии, Германии и Великобритании. ROB также разрабатывает промышленную систему по изготовлению деталей кирпичных фасадов для использования роботом, который будет укладывать кирпичи.

Совершенствование системы продолжается.

Роботы-плиточники

Близкими «родственниками» роботов-каменщиков можно считать роботов, выкладывающих плиточные полы. Недавно прототип такого полуавтоматического робота продемонстрировала Future Cities Laboratory (FCL, «Лаборатория городов будущего») в Сингапуре, работавшая совместно с компанией ROB Technologies AG.

Разработчики считают, что промышленные образцы робота-плиточника можно будет выпускать на рынок, когда удастся увеличить производительность машины вчетверо по сравнению с нынешним уровнем.

Робот, который может укладывать 1000 кирпичей в час

С переходом к Индустрии 4.0 роботы начинают появляться в строительной отрасли. А учитывая нехватку рабочей силы во всех странах, неудивительно, что новаторы обращаются к робототехнике, чтобы заполнить пробел в квалифицированных профессиях. Двумя наиболее обсуждаемыми строительными роботами являются робот-каменщик Hadrian X, разработанный FBR в Австралии, и SAM100, созданный Construction Robotics в США. Вот как эти два робота меняют одну из самых традиционных областей строительства.


Самый быстрый робот-каменщик

Робот-каменщик Hadrian X попал в заголовки газет в 2016 году, когда он уложил 1000 кирпичей в час. Чтобы понять, как это можно сравнить, каменщики обычно могут укладывать 300-500 кирпичей в день, при этом рекорд составляет 914 кирпичей, уложенных за час. С тех пор FBR дорабатывала как робота, так и материалы, с которыми он работает, используя специально разработанные блоки, которые соединяются друг с другом и в 12 раз больше, чем традиционный кирпич. Раствор, используемый с этими блоками, также был специально разработан для использования с роботом и высыхает за 45 минут, по сравнению с 1-2 днями для традиционного раствора. Hadrian X может укладывать 200 таких блоков за час, и FBR стремится увеличить этот показатель.

Робот использует 30-метровую стрелу, которая доставляет кирпичи на укладочную головку, а также может резать, шлифовать, фрезеровать и направлять кирпичи по размеру. Можно использовать кирпичи разных размеров, от кирпича стандартного размера до крупных блоков, разработанных FBR. Кирпичи необходимо вручную загрузить в робота, после чего он сможет работать автономно. А благодаря своей телескопической стреле он также может строить криволинейные стены и укладывать кирпичи по углам.

В настоящее время запатентованная система управления использует данные CAD и 3D-моделей и использует декартовы координаты и параметрический расчет для определения места размещения каждого кирпича. С появлением информационного моделирования зданий (BIM) и 3D-моделирования нетрудно представить себе время, когда роботы-каменщики, такие как эти, смогут получить доступ и использовать модель BIM, чтобы определить, как и где класть кирпичи. Хотя Hadrian X в настоящее время недоступен в продаже, когда он будет выпущен, FBR заявляет, что типичный дом можно построить всего за два дня с помощью их робота.


Устранение ручного труда при кладке кирпича

Подход Construction Robotics немного отличается от подхода FBR. Вместо того, чтобы автоматизировать весь процесс, SAM100 (полуавтоматический каменщик) работает вместе с человеком, помогая исключить часть ручного труда из процесса. С помощью SAM100 можно укладывать до 3000 кирпичей в день, что делает строительство в шесть раз быстрее, чем каменщик, работающий самостоятельно. Этот робот поднимает кирпичи, наносит на них раствор и кладет кирпичи на стену. Затем каменщик, работающий вместе с роботом, сглаживает излишки раствора. Это значительно ускоряет процесс укладки, а также улучшает здоровье и безопасность рабочих за счет сокращения ручных операций.

Интересные разработки для строительства и BIM

Учитывая, что потребность в квалифицированных каменщиках и в большем количестве домов быстро растет во всем мире, автоматизация процесса кладки кирпича для ускорения массового строительства является очевидным ответом. И поскольку переход к строительным роботам продолжает развиваться, вполне вероятно, что BIM будет играть все возрастающую и неотъемлемую роль в процессе строительства как средство предоставления строительной информации для этих новых технологий. Одно можно сказать наверняка — цифровая автономная эра действительно наступила в строительной отрасли.


 

Наша история | ФБР

FBR проектирует, разрабатывает, строит и эксплуатирует динамически стабилизированных роботов для удовлетворения глобальных потребностей.

Opportunity

Представляем самого передового в мире строительного робота – будущее строительной отрасли наступило.

Смотреть видео

1994

  • 1994

  • У Mark Pivac есть идея мобильного робота с динамической стабилизацией — высокоточной системы, которая непрерывно регулирует положение рабочего органа робота.

2005

  • 2005

  • Марк Пивак регистрирует патенты на «автоматизированную систему кладки кирпича» и создает первый прототип Адриана. После успешной демонстрации возведения стены с использованием наземных роботов и раствора производство Адриан 105 Система запускается.

2014

  • 2014

  • После временной паузы во время мирового финансового кризиса, возобновляется разработка Hadrian 105 .
  • В следующем году FBR внесены в списки на ASX.

2016

  • 2016

  • Hadrian 105 строит первую в мире блочную структуру с несколькими комнатами на основе 3D-модели автоматизированного проектирования без вмешательства человека, обеспечивая проверку концепции того, что впоследствии станет Hadrian X® .

2017

  • 2017

  • FBR переезжает на новое место для быстрого расширения команды, а также подписывает соглашение с Королевством Саудовская Аравия для строительства 50 000 домов с использованием передовой технологии Hadrian X® .

2018

  • 2018

  • Компания FBR завершила механическую сборку первого Hadrian X® и продемонстрировала свои возможности, построив домашнюю конструкцию менее чем за три дня. Кроме того, подписывает соглашения о стратегическом сотрудничестве и глобальном партнерстве с GP Vivienda 9.0057 и Wienerberger AG соответственно, чтобы изучить потенциал Hadrian X® в Мексике и разработать глиняные блоки, оптимизированные для Hadrian X® .

2019

  • 2019

  • Компания FBR Hadrian X® достигла значительных успехов, в том числе точно завершила свою первую наружную конструкцию дома, запустила пилотных программ по строительству с доходом от Archistruct Builders & Designers , GP Vivienda и Summit Homes Group , а также начало строительства второго Hadrian X® . Компания также завершает демонстрационный этап пилотной программы строительства, построив 11 сертифицированных конструкций домов, и получает золотую награду Эдисона за выдающиеся достижения. Основатели Майк и Марк Пивак совместно названы победителями конкурса EY «Предприниматель года » в категории «Молодой мужчина Западного региона».

2020

  • 2020

  • Машина FBR Hadrian X® достигла важного рубежа, обеспечив коммерческую скорость укладки более 200 блоков в час. Компания заканчивает стены первого демонстрационного дома, используя Hadrian X® , и этап пилотной программы с GP Vivienda , возводя два дома рядом. Кроме того, FBR строит коммерческий и общественный центр в Западной Австралии, завершая заключительный этап Соглашения о пилотной программе строительства с Archistruct и Hadrian X® завершает строительство своего первого двухэтажного здания. FBR получает награду Австралийского института здравоохранения и безопасности 2020 года за инновации в области здравоохранения и безопасности (для малых и средних предприятий).

2021

  • 2021

  • FBR сотрудничает с Xella в пилотной программе строительства с использованием блоков из ячеистого бетона автоклавного твердения и блоков из силиката кальция. Компания Hadrian X® строит свой самый крупный на сегодняшний день проект — детский центр, а также строит пять домов в южном пригороде Западной Австралии. FBR обеспечивает контракты на поставку многоквартирных домов и Wall as a Service™ , а также подписывает лист условий для 5000 домов в Мексике. FBR реализует свой крупнейший проект, строя 16 домов с помощью Inspired Homes . Компания также подписывает Меморандум о взаимопонимании с Министерством энергетики и инфраструктуры Объединенных Арабских Эмиратов , чтобы доставить Hadrian X® в ОАЭ.

2022

  • 2022

  • Liebherr-Mischtechnik GmbH и FBR подписывают Меморандум о взаимопонимании по промышленному производству и коммерциализации Hadrian X® . Hadrian X® завершает конструкцию с практически нулевым количеством отходов на стройплощадке и механической сборкой первого нового поколения Hadrian 9.0057 завершен. FBR начинает испытания с блоками Xella и завершает строительство дома из блоков Wienerberger Porotherm. Строительство пятого и последнего дома в портфеле FBR Wellard завершено, и предварительное тестирование DST® для приложений 3D-печати на существующей платформе Hadrian X® завершено. Fastbrick Americas LLC Создана операционная компания в США, а FBR представлен на выставке инноваций Западной Австралии на Экспо 2020 Дубай .

2023

  • 2023

  • FBR предоставил сертификат International Code Council (ICC) для использования Fastbrick Adhesive® в строительстве бетонной кладки.