Смазка пластичная это: Пластичные смазки – назначение и составляющие компоненты | SUPROTEC

Содержание

Пластичные смазки – назначение и составляющие компоненты | SUPROTEC

Пластичные смазки – специальные технические составы, имеющие двухкомпонентную основу. По классификации располагаются между жидкими и твердыми смазками. Это позволяет им найти применение в тех узлах качения и парах трения, где организовать постоянную смазывающую циркуляцию не представляется возможным.

Ключевые вектора использования пластичных смазок:

  • подшипники и ступицы;
  • амортизаторы и сальники;
  • канаты и их сердечники;
  • шарниры;
  • винтовые и цепные передачи;
  • редукторы;
  • прочие трущиеся и движущиеся узлы.

Свойства пластичных смазок определяет их состав. Основным компонентом, как правило, является жидкое масло. Его доля в объеме вещества до 90%. Дополнительными элементами состава являются загустители и добавки. В общей массе вещества они могут занимать до 20%.

Загустители еще называют металлическим мылом. Это связано с его структурой и физическими свойствами. Они имеют хорошо организованную кристаллическую структуру, впитывают масло и удерживают его. Таким образом, на узлах трения и качения создается защитная пленка, а для некоторых модификаций и герметизирующая, и консервирующая база.

Дисперсионная среда или масло, – ключевой элемент пластичной смазки. Исходя из его физико-химических свойств можно дать одну из классификаций техническому составу:

  1. Нефтяные или минеральные;
  2. Высококипящие с температурой до 300-600 градусов;
  3. Синтетические на основе углеводородного сырья;
  4. Кремнийорганические или симбиозные;
  5. На основе сложных эфиров;
  6. На основе галогеноуглеродного сырья;
  7. Фторсилоксановые;
  8. Перфторалкилполиэфиры.

Загустители – не менее важный компонент. Он придает смазке пластичности. Не позволяет растекаться по поверхности трущихся деталей даже при высокой рабочей температуре.

В качестве агрегата могут использоваться:

  • металлические мыла на основе таких элементов как литий, кальций или натрий;
  • комплексные мыла;
  • неорганические загустители, такие как силикагель или бентонитовая глина;
  • синтетические загустители, в основном используется, полимочевина или пертетрафторэтилен.

Добавки – специфический элемент в составе пластиной смазки. Они, как правило, улучшают одно или несколько свойств базового сырья.

В основном их делят на 3 неравные категории:

  1. Присадки. Раскрывают свойства базовых масел, входящих в состав;
  2. Наполнители. Отвечают за герметизирующие и антифрикционные качества;
  3. Модификаторы структуры. Задают необходимую пластичность, для некоторых сред и узлов требуются особые химико-физичекские свойства.

Для добавок используются следующие компоненты: графит, порошки металлов, таких как, цинк, свинец, медь, ряд иных твердых добавок или сложные соединения, например, дисульфид молибдена.

Свойства исходя из базового состава

При отсутствии нагрузки и без повышения температуры пластичные смазки представляют собой очень вязкую среду. Фактически проявляются свойства твердого тела, сохранение формы. Добавив кинетическую и температурную составляющую, мы получаем практически текущую среду, проявляющую свойства жидкости. Для каждой модификации пластичной смазки это температурная и кинетическая граница своя.

В основном пластичные смазки призваны пролонгировать эксплуатационный ресурс пар трения или качения. Снизить износ узлов, зубьев и шестерней в механизмах. Кроме этого, в отдельных случаях пластичные смазки как раз равномерно распределяют нагрузку для более плавного и равномерного износа – это снижает вероятность заклинивания механизма. В отдельных случаях, технический состав защищает деталь от агрессивной среды или препятствует проникновению в отдельные сегменты системы влаги, пара или иного инородного проявления.

Стоит отметить, что есть ряд вечных пластичных смазок. То есть составов, не меняющих физико-химических свойств на всем протяжении эксплуатации. Они закладываются в механизм единовременно и навсегда. Есть и долго играющие вариации, с периодом замены 7-10 лет. Но в основном пластичные смазки требуют периодического обновления. У каждой вариации свой уникальный интервал, зависящий от множества факторов.

Еще одна особенность пластичных смазок – это антикоррозионные свойства. Более 90% модификаций продукта обладают этой особенностью. Кроме этого, существуют специальные антикоррозионные и герметизирующие смазки. Ими покрывают деталь или узел, требующий длительной транспортировки или хранения.

Отдельные вариации герметизирующих смазок великолепно пропускают электрический импульс или обладают хорошим коэффициентом вязкости в условиях полного вакуума.

Перспективное направление в сегменте изготовления пластичных смазок – это основа в виде натурального растительного масла. Такие компоненты абсолютно безопасны для окружающей среды и многие производители активно двигаются в этом векторе.

Где и когда использовать ту или иную пластичную смазку? – подскажет температура ее плавления и граница разложения ее дисперсной составляющей (масла). Классификация пластичных смазок в России зависит от консистенции, состава и области применения. Частичные характеристики и таблица сравнения будет приведена чуть ниже.

Пластичные смазки – характеристики

По консистенции пластичные смазки можно разделить на три большие подгруппы: полужидкие, пластичные и твердые.

Деление пластичных смазок по консистенции

полужидкие

гель

упаковываются в специальные тубы

пластичные

вязкий крем

упаковываются в тубы или короба

твердые

жевачкообразная масса

упаковываются в жестяную банку или ведро

По составу, как мы уже частично упомянули в первом разделе, ПС делят на 4 подкатегории: мыльные, углеводородные, органические и неорганические.

Классификация пластичных смазок по составу

Название

Основа для загустителя

1.

мыльные

соли высших карбоновых кислот

2.

органические

термостабильные органические компоненты

3.

неоргнические

Высокодисперсные термостабильные соединения

4.

углеводородные

тугоплавкие углеводороды, такие как парафин или синтетический воск

Купить пластичную смазку проще всего ориентируясь на ГОСТ 23258-78. Он дает классификацию по направлениям использования. Такая градация удобна как производителям агрегатов, так и непосредственно оператору (пользователю).

Классификация пластичных смазок по вектору использования

Название

Вектор использования

1.

Канатные

Используются на поверхности и у сердечника. Снижают интенсивность коррозии. Уменьшают силу трения между отдельными стальными проволочками каната.

2.

Уплотнительные

Уменьшают зазоры в шестернях и зубьях пар трения и качения.

3.

Антифрикционные

Самая распространенная категория. Используется для снижения трения и износа двух или более частей взаимодействующих деталей.

4.

Консервационные

Создают защитный слой и снижают на 95% коррозионные процессы на поверхности металлических деталей.

Одна из проблем применения пластичных смазок – это совместимость различных составов. Очень важно, что взаимодействующие компоненты не конфликтовали между собой, ведь даже хорошо вычищенный узел может содержать от 20 до 40% старой смазки.

Решить данный вопрос с минимальными затратами поможет синяя пластичная смазка от СУПРОТЕК. Ее свойства, а главное, физико-химические характеристики мы разберем ниже.

Пластичная смазка для подшипников – какую выбрать?

Новые составы от компании Супротек – это модифицированные пластичные смазки, позволяющие продлить эксплуатационный срок автомобильных подшипников и ШРУСов в 1,5-2 раза. Триботехнический состав применяется также, как и любая другая пластичная смазка. Стоит отметить, что удаление старой заводской смазки не требуется, так как компоненты полностью совместимы.

Уникальность составов – это вхождение мелкодисперсного активного минерала. Под воздействием температуры и кинетической силы он восстанавливает геометрию и создает защитный металлический слой на поверхностях пар трения и качения. Независимые тесты составом СУПРОТЕК проводились на легковых, грузовых автомобилях, а также квадроциклах. Везде была показана максимальная эффективность. А толщина образованного металлического слоя в некоторых местах достигали 0,15 мм.

Стоит отметить, что составы полностью готовы к употреблению и не требуют специальных условий для применения. Рабочий температурный диапазон от -40 до +140 градусов Цельсия. Пластичные смазки СУПРОТЕК – это демократичные цены и возможность сэкономить на дорогостоящем ремонте авто. Новая линейка заметно выделяется на полках, имея отличительный символ S синего цвета и 2 шестерни на упаковке. Продлите эксплуатационный ресурс вашего авто или специального транспортного средства вместе с пластичными смазками от компании СУПРОТЕК!

ассортимент и применение – Основные средства

А. Скобельцин

Пластичные смазки – самостоятельный вид материалов, обеспечивающих надежность и долговечность техники (ранее их называли консистентными). Их мировое производство составляет около миллиона тонн в год, что значительно меньше выпуска смазочных масел (около 40 млн. т/год).

Итак, пластичная смазка – это структурированная высокодисперсная система, которая состоит, как правило, из базового масла и загустителя. При обычных температурах и малых нагрузках она проявляет свойства твердого тела, т. е. сохраняет первоначальную форму, а под нагрузкой начинает деформироваться и течь подобно жидкости. После снятия нагрузки пластичная смазка вновь застывает. Основное ее назначение – уменьшить износ поверхностей трения и продлить тем самым срок службы деталей машин и механизмов. В отдельных случаях смазки не столько уменьшают износ, сколько упорядочивают его, предотвращают трение и заклинивание смежных поверхностей, препятствуют проникновению агрессивных жидкостей, абразивных частиц, газов и паров. Смазки, которые практически не изменяют своих показателей качества весь период работы в узле трения, относятся к «вечным» (т. е. закладываются одноразово на весь период работы техники) или долго работающим (с большим периодом замены).

Почти все смазки обладают антикоррозийными свойствами. Для защиты металлических поверхностей от коррозии при транспортировке и длительном хранении разработаны консервационные смазки. Для герметизации зазоров в механизмах и оборудовании, а также соединений трубопроводов и запорной арматуры созданы уплотнительные смазки с лучшими герметизирующими свойствами, чем у масел.

Некоторые смазки специального назначения увеличивают коэффициент трения, изолируют или, наоборот, проводят ток, обеспечивают работу узлов трения в условиях радиации, глубокого вакуума и т. п. По составу это сложные коллоидные системы, состоящие из жидкой основы, которая называется дисперсионной средой, и твердого загустителя – дисперсной фазы, а также наполнителей и присадок. В качестве дисперсионной среды используют различные масла и жидкости. Около 97% пластичных смазок готовят из нефтяных продуктов. Применяются и синтетические масла для смазок, работающих в специфичных и экстремальных условиях: сложные эфиры, фторуглероды и фторхлоруглероды, полиалкиленгликоли, полифениловые эфиры, кремнийорганические жидкости.

Изза высокой стоимости такие масла растространены не очень широко.

В отдельных случаях используют растительные масла. Работы в этом направлении весьма перспективны, поскольку материалы на основе компонентов биосферного происхождения значительно безопаснее для окружающей среды, чем минеральные аналоги.

Классификация смазок по вязкости
КлассДиапазон пенетрации, м·10–4,
перемешанной смазки (60 двойных ударов) при 25 °С
Визуальная оценка консистенции смазки
000445…475Очень мягкая, аналогичная вязкому маслу
00400…430То же
0355…385Мягкая
1310…340»
2265…395Вазелинообразная
3220…250Почти твердая
4175…205Твердая
5
130…160
Очень твердая, мылообразная
685…115То же

Область применения смазки во многом определяется температурой плавления и разложения дисперсной фазы, а также ее концентрацией и растворимостью в масле. От природы загустителя зависят антифрикционные и защитные свойства, водостойкость, коллоидная, механическая и антиокислительная стабильность смазки. Для придания этих свойств в состав вводят соли высших карбоновых кислот, высокодисперсные органические и неорганические вещества, тугоплавкие углеводороды.

В связи с ужесточением режимов эксплуатации узлов трения в большую часть современных пластичных смазок вводят добавки – присадки и наполнители. Используют присадки следующих типов: противоизносные, противозадирные, антифрикционные, защитные, вязкостные и адгезионные. Многие из них – многофункциональные, т.е. улучшают несколько свойств одновременно.

В качестве наполнителей используются высокодисперсные, нерастворимые в маслах вещества, улучшающие эксплуатационные характеристики смазки, но не образующие в ней коллоидной структуры. Чаще применяют наполнители с низким коэффициентом трения: графит, дисульфид молибдена, сульфиды некоторых металлов, полимеры, комплексные соединения металлов и др. Оксиды цинка, титана и одновалентной меди, алюминия, олова, бронзы и латуни широко используют в резьбовых, уплотнительных и антифрикционных смазках для тяжелонагруженных узлов трения скольжения. Обычно эти наполнители добавляют в объеме от 1 до 30% количества смазки.

За рубежом широко используется две классификации, разработанные Национальным институтом по пластичным смазкам (NLGI). Классификация по вязкости группирует все смазки на 9 классов по диапазону пенетрации. Величину пенетрации определяют методом погружения стандартного металлического конуса в пластичную смазку в течение определенного времени. Чем глубже погрузится конус, тем меньше класс NLGI, мягче смазка и, соответственно, тем легче она будет выдавливаться из зоны трения. Смазки с высоким номером NLGI, напротив, будут создавать дополнительное сопротивление и плохо возвращаться в зону трения. Другая, достаточно широко признанная классификация группирует пластичные смазки в 5 классов, основываясь на областях применения на автомобилях.

В России используется несколько систем классификации – по консистенции, по составу и областям применения. По консистенции смазки разделяют на полужидкие, пластичные и твердые. Пластичные и полужидкие представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, присадок и добавок. Твердые смазки до отвердения остаются суспензиями, состоящими из смолы или другого связующего и растворителя. В них в качестве загустителя используют дисульфид молибдена, графит, технический углерод и т. п. После отверждения (испарения растворителя) твердые смазки превращаются в золи с низким коэффициентом сухого трения.

Классификация смазок по применению
ПрименениеКласс по NLGIОбслуживание
ШассиLAМягкие условия, частая замена
LBРедкая замена, высокие нагрузки, контакт с водой
Подшипники колесGAМягкие условия
GBСредние условия, типичные для большинства автомобилей
GCЖесткие условия, высокие температуры, эксплуатация в режиме частых пусков и остановок

По составу смазки разделяют на четыре группы.

1. Мыльные. В качестве загустителя используются соли высших карбоновых кислот (мыла). Наиболее распространены кальциевые, литиевые, бариевые, алюминиевые и натриевые смазки. Мыльные смазки в зависимости от жирового сырья называют условно синтетическими, на основе синтетических жирных кислот, или жировыми – на основе природных жирных кислот, например синтетические или жировые солидолы.

2. Неорганические. В качестве загустителя использованы термостабильные высокодисперсные неорганические вещества. Это силикагелевые, бентонитовые, графитные смазки и др.

3. Органические. Для их получения используют термостабильные, высокодисперсные органические вещества. Это полимерные, пигментные, полимочевинные, сажевые смазки и др.

4. Углеводородные. В качестве загустителей используют тугокоплавкие углеводороды: петролатум, церезин, парафин, различные природный и синтетический воск.

По области применения ГОСТ 23258–78 разделяет смазки на антифрикционные, консервационные, уплотнительные и канатные. Такая классификация более удобна для разработчиков техники. Антифрикционные смазки уменьшают износ и трение сопряженных деталей. Консервационные смазки снижают коррозионное разрушение металлоизделий. Уплотнительные смазки герметизируют зазоры и неплотности узлов и деталей. Канатные смазки наряду со снижением коррозионного разрушения стальных канатов также снижают износ отдельных проволок при их трении друг о друга.

Немаловажная проблема – совместимость смазок разного состава. При замене смазочного материала в узле трения не всегда полностью удаляется предыдущая закладка. Так, в шарнирах рулевого управления автомобилей после четырехкратного шприцевания остается до 40% «старой» смазки. При смешении «старой» и «новой» смазок ухудшаются эксплуатационные характеристики смеси по сравнению с исходным продуктом. Эта смесь вытекает из узла трения либо чрезмерно уплотняется, снижая надежность узла. Следовательно, при выборе новой смазкизаменителя потребителю полезно знать, можно ли смешивать смазки разных марок.

Основным фактором, определяющим совместимость смазок, является природа загустителя. Жидкая основа, присадки и добавки существенного влияния на совместимость не оказывают. Со смазками всех марок совместимы консервационные материалы, загущенные тугоплавкими углеводородами (парафином, церезином). Совместимы почти все продукты, загущенные стеаратом натрия и оксистеаратом лития. Плохо совместимы смазки с силикагелем, стеаратом лития и полимочевиной.

Совместимость пластичных смазок с различным загустителем
ЗагустительСтеарат кальцияКомплекс кальциевого мылаСтеарат литияОксистеарат литияСтеарат натрияСилика­гельПолимоче­винаЦерезин, парафин
Стеарат кальцияСННССННС
Комплекс кальциевого мылаНСНССССС
Стеарат литияННССНННС
Оксистеарат литияССССССНС
Стеарат натрияССНСССС
СиликагельНСНСССС
ПолимочевинаНСННСС
Церезин, парафинСССССССС

Условные обозначения: С – совместимы; Н – несовместимы; «–» – нет данных.

Сейчас в России вырабатывается примерно 150 наименований пластичных материалов в количестве 45…50 тыс. т/год. По структуре производства мыльных смазок Россия значительно отстает от Западной Европы и США, где основными являются литиевые смазки – в США 60% общего объема и в Западной Европе 70%. В России их доля невелика – 23,4%, или около 10 тыс. т/год.

Современные смазки на 12-гидроксистеарате лития, например типа Литол24, хорошо работают в широком диапазоне температур – от –40 до +120 °С, имеют хорошие эксплуатационные свойства, заменяют многие устаревшие продукты, такие как консталин, 113, солидолы и др. Это перспективные и конкурентоспособные материалы.

Более перспективны смазки, приготовленные на комплексном литиевом мыле. Они работают в более широком диапазоне температур (от –50 до +160…200 °С), нагрузок и скоростей. Комплексная литиевая смазка ЛКСметаллургическая в ряде случаев заменяет ИП1, 113, ВНИИНП242, Литол24. Комплексные литиевые смазки также применяются в оборудовании текстильной, станкостроительной, автомобильной и других отраслей промышленности, в подшипниках ступиц колес автомобилей.

Основу отечественного ассортимента – 44,4% – составляют устаревшие гидратированные кальциевые смазки (солидолы), доля которых в развитых странах, например в США, не превышает 4%. Производство натриевых и натриевокальциевых смазок в России составляет 31% общего объема, или до 12,5 тыс. т/год. Эти материалы имеют хорошие характеристики и применяются при температурах от –30 до +100 °С. Доля прочих мыльных смазок в России невелика – 0,3%, или 89 т/год. Это продукты на алюминиевых, цинковых, смешанных мылах (литиевокальциевых, литиевоцинковых, литиевоцинковосвинцовые, бариевосвинцовые и др.), а также получаемые путем смешения готовой смазки с металлическим порошком.

Доля немыльных смазок, приготовленных на неорганических загустителях (аэросилы, силикагели, сажа, бентонит), в России всего 0,2%, или менее 10 т/год. Главным образом это узкоспециализированные термостойкие (до 200…250 °С) и химически стойкие смазки. В США доля этих материалов – 6,7%. Немыльные смазки готовят на органических загустителях – полиуреатах, пигментах. Полиуреатные продукты нового поколения, приготовленные на нефтяных и синтетических углеводородных маслах, работают при температурах до 220 °С и по этому показателю близки к термостойким тефлоновым смазкам на основе перфторполиэфиров, выгодно отличаясь от последних значительно меньшей ценой. В США доля производства этих материалов составляет 6% и непрерывно увеличивается. В России полиуретановые смазки не выпускают.

Объемы производства отечественных углеводородных материалов составляют 3 тыс. т/год. В основном это консервационные и канатные смазки. Полужидкие смазки типа Трансол200, Редукторная вырабатывают в России в объеме всего около 20 т/год.

Структура производства пластичных смазок в России
Тип смазки1992 г.2000 г.
%тыс. т%тыс. т
    Литиевые17,2316,821,759,83
    Литиевые комплексные0,160,160,090,04
    Натриевые и натриево-кальциевые2,282,2228,8313,03
    Кальциевые гидратированные62,6761,141,4218,72
    Кальциевые комплексные0,420,410,930,42
    Прочие мыльные1,361,330,290,1316
Неорганические0,080,080,020,008
Органические0,0004
Углеводородные6,466,36,643,0
Полужидкие9,2390,040,02

Анализ отечественного ассортимента смазок позволяет сделать следующие выводы. В России сохраняется неблагоприятная структура ассортимента: большая доля низкокачественных гидратированных кальциевых смазок и незначительная доля высокоэффективных литиевых. Комплексные литиевые смазки выпускают в малых количествах. Большинство пластичных материалов массового применения морально устарело еще 20…30 лет назад, ассортимент практически не обновляется.

Экономический рост, особенно в автомобильной, металлургической, нефтегазодобывающей отраслях промышленности, стимулирует рост потребления пластичных материалов, в том числе высококачественных автомобильных смазок, смазок для металлургического оборудования, работающего при максимальной температуре до 150 °С, а также арматурных и резьбовых.

Выбор подходящей смазки для пластиковых деталей

Всегда полезно смазывать пластиковые детали, когда это возможно, поскольку это снижает трение и износ, снижает энергопотребление и увеличивает срок службы деталей. Например, исследования показали, что пластиковые подшипники скольжения со смазкой служат в пять раз дольше, чем несмазанные. При выборе смазки для пластиковых деталей наиболее важным фактором является совместимость смазки с пластмассовым материалом.

Определение совместимости смазочных материалов и пластмассовых деталей

Для проверки совместимости смазочных материалов с пластмассами производители отслеживают изменения физических свойств пластмассы в условиях скорости, нагрузки и окружающей среды. Эти свойства включают вес, объем, твердость, прочность и относительное удлинение. Каждый производитель определяет предел допустимых изменений, но обычно диапазон составляет от 7% до 10%. Оценивая эти тесты, убедитесь, что они отражают наихудшие из возможных условий, поскольку и смазочные материалы, и пластмассы более подвержены изменениям при высоких температурах и неблагоприятных условиях, особенно при высоких динамических нагрузках. Выбор несовместимой смазки для пластиковых деталей может привести к растрескиванию пластика под напряжением, обесцвечиванию, потере стабильности размеров или структурной целостности.

Как выбрать смазку для пластиковых деталей

Существует три основных критерия выбора смазки для пластиковых деталей:

1. Химия

Совместимость смазочного материала с пластиком во многом определяется его химической структурой. Смазки на основе силикона, перфторированного PFAE, минеральных масел и синтетических углеводородов (SHC или PAO) обычно хорошо работают с пластмассами. Сложные эфиры и полигликоли, как правило, несовместимы с пластиком, хотя есть исключения в зависимости от типа пластика. Иногда добавки могут вызвать нежелательную или непреднамеренную реакцию между смазкой и пластиком. Твердые добавки, такие как графит и дисульфид молибдена, могут проникать в пластиковую деталь и ослаблять ее. И наоборот, твердые добавки ПТФЭ могут быть полезны в определенных случаях, например, для обеспечения сухой смазки или снижения трения при запуске.

2. Вязкость

Масла с высокой вязкостью – масла с VG по ISO 100 и выше – с меньшей вероятностью проникают, растрескиваются или иным образом неблагоприятно воздействуют на пластмассовые материалы. Для более легких нагрузок требуются масла с более низкой вязкостью для предотвращения вязкостного сопротивления, в то время как для более высоких нагрузок требуются масла с более высокой вязкостью для поддержания смазочной пленки от начала до конца. Для смазок консистенция NLGI 1 или 0 помогает уменьшить трение и шум, создаваемый смазкой (смазочный шлепок).

3. Устойчивость к старению

Смазочные материалы с большей вероятностью воздействуют на пластмассовые детали по мере их старения. Вот почему синтетические смазочные материалы, обладающие высокой устойчивостью к старению, являются лучшим выбором для долгосрочного применения. Побочные продукты дегазации пластика, в частности формальдегид и стирол, ускоряют процесс старения смазочного материала и должны быть сведены к минимуму, если это возможно.

Рекомендуемые смазочные материалы для пластиковых деталей

Смазочные материалы на основе минерального масла не разъедают большинство пластиков и обеспечивают отличные характеристики по экономичной цене. Однако, если ваше приложение требует высоких рабочих скоростей, высоких температур или длительной работы, лучшим выбором будут синтетические смазочные материалы, такие как углеводородные (ПАО). ПАО совместимы с большинством пластиков, обладают высокой устойчивостью к старению и обеспечивают долговременную смазку в диапазоне температур от -60º до 320ºF.

Смазочные материалы на основе силикона также демонстрируют превосходную совместимость и являются отличным выбором для применения при низких нагрузках и в широком диапазоне температур (обычно от -90º до 425ºF). Смазочные материалы PFAE чрезвычайно совместимы даже с несовместимыми пластиками и могут использоваться в условиях экстремальных температур, до 500ºF. Однако из-за их высокой стоимости смазочные материалы PFAE следует использовать только в случае необходимости.

У вас есть проект? Давайте обсудим решения: 610-926-3245.

Подробная информация о пластичной смазке — Molykote Lubricants от DuPont

Подробная информация о пластиковой смазке — Molykote Lubricants от DuPont Химпойнт Химпойнт
  • Дом
  • Приложение
  • Пластиковая смазка

Наши решения

Детали и компоненты машин, изготовленные из пластика, могут быть более простой и экономичной альтернативой традиционным металлическим деталям для некоторых применений. Как и в случае с металлическими компонентами, правильная смазка может продлить срок службы и эффективность, если не использовать смазку вообще. Некоторые свойства, содержащиеся в традиционных смазочных материалах, не являются полезными или функциональными в пластиковой смазке. Совместимость между смазкой и пластиком является ключевым аспектом, который следует учитывать при выборе смазки, чтобы не ослаблять и не ухудшать эксплуатационные свойства пластмассовой детали.

Противозадирные пасты MOLYKOTE®

Компаунды MOLYKOTE®

Дисперсии и аэрозоли MOLYKOTE®

Смазки MOLYKOTE®

Посмотреть детали Отображение {0}-{1} из {2} результатов

Продукты

Информация, представленная в паспорте безопасности, относится к США. Для любой другой страны перейдите на веб-сайт DuPont или свяжитесь с нами.

* – Текущие правила требуют, чтобы вы отправили форму запроса, чтобы получить этот файл.

Фильтры товаров

    Загрузка…

    . .. Продукция

    Не можете найти нужный товар?

    ChemPoint может помочь

    Связанные ресурсы

    • Руководство по выбору антифрикционных покрытий

      Скачать
    • Брошюра по бытовой технике

      Скачать
    • Решения DuPont для офисного оборудования и бытовой электроники

      Скачать
    • Фторсиликоновая смазка для подшипников повышает надежность

      Скачать
    • Высокоэффективные промышленные смазочные жидкости

      Скачать
    • Смазка для горнодобывающей промышленности

      Скачать
    • Решения для смазки резьбовых соединений

      Скачать
    • Руководство по выбору промышленных смазочных материалов MOLYKOTE®

      Скачать
    • Смазочные материалы MOLYKOTE® и характеристики автоматических выключателей

      Скачать
    • Решения MOLYKOTE® в области смазки для химической и нефтехимической промышленности

      Скачать
    • Синтетическое масло MOLYKOTE® продлевает срок службы смазки на 57 % в воздушных компрессорах

      Скачать
    • Проверенные и эффективные решения для нефтегазовой отрасли

      Скачать
    • Специальные смазочные материалы для ветроэнергетики

      Скачать
    • Избавьтесь от отходов при управлении сточными водами

      Скачать
    • Это MOLYKOTE® (обзорная брошюра)

      Скачать
    • Руководство по устранению неполадок: решения ваших проблем со смазкой

      Скачать
    • Два приложения. Одна смазка. Усовершенствованная технология двойного назначения для повышения производительности и снижения затрат.

      Скачать
    • Смазка и уплотнение клапанов для нефтегазовой отрасли

      Скачать
    • Подшипник колеса BG-20 Пример из практики

      Скачать
    • Пример использования подшипников качения BR2-Plus

      Скачать
    • Синтетическое трансмиссионное масло L-1115 FM Практический пример

      Скачать
    • Синтетическое масло для червячных передач L-1146 FM Практический пример

      Скачать
    • Пример использования синтетического компрессорного масла серии L-1200FM

      Скачать
    • Синтетическое гидравлическое масло L-1346 Практический пример

      Скачать
    • Синтетическое масло Chail Oil L-1460 FM Пример использования

      Скачать
    • Синтетическое масло для цепи морозильной камеры L-1468 Практический пример

      Скачать
    • Пример вакуумного насоса L-1510

      Скачать
    • Вакуумный насос L-1668FM Пример из практики 1

      Скачать
    • Вакуумный насос L-1668FM Пример 2

      Скачать

    <>

    Уплотнительное кольцо MOLYKOTE® 55 — MOLYKOTE® Минута техобслуживания

    MOLYKOTE® 111 Компаунд — MOLYKOTE® Протокол технического обслуживания

    Здравствуйте, дайте нам знать, если у вас есть какие-либо вопросы о продукте, когда вы посещаете наш веб-сайт.

    Запросить документ

    Скачать документ

    Загрузка документа

    Загрузка вашего документа должна начаться в ближайшее время. Если нет, нажмите кнопку «Загрузить» ниже, чтобы просмотреть документ.

    Скачать

    ChemPoint ни при каких обстоятельствах не будет разглашать личную информацию пользователей частным лицам или компаниям. Вся собранная информация используется исключительно для поддержки связи со службой поддержки клиентов ChemPoint.