Расчет объема земляных работ для траншеи под трубопровод: объема земляных работ при прокладке трубы, по дну, требования СНиП и СП, расценки в смете

Определение объема земляных работ

Объем земляных работ необходимо определять для того, чтобы обоснованно выбрать методы и средства их выполнения, устано­вить необходимость транспортирования или возможность распре­деления вынутого из котлованов или траншей фунта на прилега­ющей территории и последующего его использования для устрой­ства обратных засыпок, вычислить стоимость земляных работ. Земляные работы по сравнению с другими работами на строитель­ной площадке являются наиболее трудоемкими и поэтому выпол­няются механизированным способом. Только в отдельных случа­ях, когда не представляется возможным использовать механизмы, применяется ручной труд в небольших объемах.

Срезка растительного слоя. Объем работ по срезке растительно­го слоя определяется по формуле

Vc.р.с=LB·0.2

где Vc.р.с — объем срезки растительного слоя, м3; L — длина трас­сы, м; В — ширина рабочей зоны, м

B=A+M+Б+1

где А — ширина траншеи поверху, м; М — рабочая зона монтаж­ного механизма, используемого для укладки труб, м; Б — зона складирования грунта, м;

Б=2KрV/h

где Kр — коэффициент разрыхления грунта; V — объем грунта 1 м траншей, м3; h — принимаемая высота отвала, м, h = 1,5-2; 0,2 — средняя толщина растительного слоя, м.

Схема определения ширины рабочей зоны

Для основных производственных процессов объемы разраба­тываемого грунта определяют в плотном теле. Подсчет объемов сводится к определению объемов различных геометрических фи­гур, составляющих то или иное сооружение. Для подсчета объема земляных работ по отрывке траншеи необходимо на всех пикетах, а также в точках перехода трубопровода на другой диаметр, пере­лома продольного профиля трассы определить поперечные сече­ния траншеи. Тогда объем выемки грунта согласно рис. 2.2 опре­деляется по формуле:

V=Ln·(Fn+Fn+1)/2

где Fn, Fn+l — площадь поперечного сечения в характерных точ­ках траншеи, м2; Ln — длина траншеи между этими точка­ми, м.

Ширину траншеи по дну и ее глубину определяют согласно СНиП 3.02.01-87 в зависимости от конструктивных особенностей линейно-протяженного сооружения и методов производства ра­бот.

Схема определения объема траншеи

В объем земляных работ необходимо включить отрывку при­ямков при бесканальной прокладке тепловых сетей, а также кот­лованов под камеры и колодцы. При сложных формах выемок их разбивают на более простые геометрические тела, производят под­счет их объемов, которые затем суммируют. При подсчете объемов земляных работ следует выделить объем избыточного грунта, вы­тесняемого трубопроводами, колодцами, камерами, и объем фун­та, образовавшегося за счет остаточного рыхления, который, в свою очередь, равен объему засыпки, умноженному на коэффи­циент остаточного разрыхления грунта.

Для получения объема планировочных работ всю площадь на плане с горизонталями (генплан трассы) разбивают на элементар­ные участки, по каждому из них подсчитывают объемы грунта и результаты суммируют.

Показатели разрыхления грунта

Грунт

Первоначальное увеличение объема грунта после разработки, %

Остаточное разрых­ление грунта, %

Глина ломовая

28-23

6-9

Суглинок легкий

18-24

3-5

Песчаный

10-15

2-5

Насыпной неуллотненный

12-17

3-6

Основные способы разработки грунта. Земляные работы могут выполняться вручную и механизированными способами — меха­ническим, гидромеханическим, взрывным и комбинированным.

Разработка грунта вручную допускается только в тех случаях, когда по каким-либо объективным причинам не могут быть ис­пользованы землеройные и другие механизмы и объемы работ малы. Так, для рытья приямков под стыки плетей трубопроводов или для подчистки оснований узких траншей из-за стесненных условий и малого объема работ механизмы не могут быть приме­нены, и поэтому используют ручной труд.

Механическим способом, при котором на грунт действуют уси­лием резания различных машин, выполняют до 85% объемов зем­ляных работ.

Выбор гидромеханического, взрывного и комбинированного способов разработки фунта зависит от конкретных условий строи­тельства, и в данном справочнике они не рассматриваются.

Остались вопросы?

Расчет объема земляных работ при строительстве магистральных трубопроводов — Студопедия

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

Задача 1

Параметры земляных сооружений, применяемых при строительстве магистральных трубопроводов (ширина, глубина и откосы траншеи, сечение насыпи и крутизна ее откосов и др. ), устанавливают в зависимости от диаметра прокладываемого трубопровода, способа его закрепления, рельефа местности, грунтовых условий и определяют проектом. Размеры траншеи (глубина, ширина по дну, откосы) устанавливают в зависимости от назначения и диаметра трубопровода, характеристики грунтов, гидрогеологических и других условий.

Минимальная ширина траншеи по дну устанавливается СНиП и принимается равной D +300 мм для трубопроводов диаметром до 700 мм (где D – условный диаметр трубопро­вода) и I,5D для трубопроводов диаметром 700 мм и более с учетом следующих дополни­тельных требований:

· для трубопроводов диаметром 1200 и 1400 мм при рытье траншей с откосами не круче 1:0,5 ширину траншеи по дну допускается уменьшать до величины D +500 мм;

· допускается принимать ширину траншей равной ширине рабочего органа землерой­ной машины, но не менее указанной;

· ширина траншеи по дну на кривых участках под гнутые или сварные отводы должна быть равна двухкратной величине по отношению к ширине на прямолинейных участках для обеспечения вписания трубопровода в кривую траншею;

· ширина траншеи по дну под балластными грузами или анкерными установками должна быть не менее 2. 2D, на участках трубопровода балластируемого грунтом с исполь­зованием нетканого синтетического материала, 1.6D.

Таблица 1. Наибольшая допустимая крутизна траншей и котлованов в грунтах естественной влажности

  Отношение высоты откоса к его заложению при глубине выемки, м
Грунты 1,5
Насыпные 1 : 0.67 1 : 1 1 : 0.25
Песчаные и гравелистые влажные (ненасыщенные) 1 : 0.5 1 : 1 1 : 1
Глинистые 1 : 0.25 1 : 0.67 1 : 0.85
супесь 1 : 0 1 : 0.5 1 : 0.75
суглинок 1 : 0 1 : 0.25 1 : 0,5
глина 1 : 0 1 : 0. 5 1 : 0.5
лёссовый сухой    
Моренные 1 : 0.25 1 : 0.57 1 : 0.75
песчаные и супесчаные 1 : 0.2 1 : 0.5 1 : 0.65
суглинистые    
Скальные 0.2 0.2 0.2
на равнине По проекту По проекту По проекту
в горах    

Глубину траншеи устанавливают из условий предохранения трубопровода от мexaнических повреждений при переезде через него автотранспорта, строительных и сельскохозяйственных машин и назначают равной: для трубопроводов диаметром до 1000 мм – Н = 0,8 м: для трубопроводов диаметром 1000 м и более Н = 1м; для болотистых грунтов, подлежащих осушению, Н = 1,1 м; для песчано-барханных грунтов Н = 1м от нижних межбарханных оснований; для скальных и болотистых грунтов при отсутствии проезда авто транспорта, строительных и сельскохозяйственных машин, Н = (0,6 – 0,8) м.

Таблица 2. Классификация грунтов

Группа грунтов по трудности разработки
Грунты экскава­торами Бульдозерами Скреперами Грейдерами и ав­тогрейдерами
Одноков­шовыми Многоков­шовыми
Галька и гравий размером, мм:      
-до 80 I II II II II
-более 80 с примесью булыг II - - - -
Гипс мягкий IV - - - -
Глина: II II II II II
-жирная мягкая или насыпная слежавшаяся с примесью щебня, гравия и булыг 10 % то же > 10 % III - II - III
-мореная с валунами до 30 % IV - III - III
-сланевая IV - III - III
-твёрдая IV - III - III
-тяжелая ломовая III - III - III
Грунт растительного слоя без корней и с корнями с примесью гравия, щебня или строительного мусора II - I I -
Лёсс:      
-естественной влажности, рыхлый, с примесью гравия и гальки I II I I I
-отвердевший IV - III II II
Мел мягкий IV - - - -
Мерзлые грунты песчаные и супесчаные, предварительно разрыхленные II - III - -
Мерзлые грунты глинистые и суглинистые, предварительно разрыхленные V - III - -
Опоки IV - - - -
Песок всех видов (кроме сухого, сыпучего барханного и дюнного), в том числе с примесью щебня, гравия и гальки I II II II II – III
Скальные грунты, предварительно разрыхленные IV - - - -
Скальные грунты, не требующие разрыхления IV - - - -
Солончак и солонец:      
-мягкий I II I I I
-отвердевший III - III II III
Суглинок легкий и лёссовидный тяжелый, а также всех видов с примесью гравия, щебня, булыг и строительного мусора II II II II II
Супесок всех видов, в том числе с примесью щебня, гравия, строительного мусора или булыг до 10% I II II II II
-то же > 10% I   II - II
Строительный мусор:      
-рыхлый и слежавшийся II - II - II
-сцементированный III - III - -
Торф:      
без корней и с корнями толщиной до 30 мм I I I I I
с корнями толщиной более 30 мм III - I I -
Трепел слабый IV - - - -
Чернозем и каштановые земли: I I I I I
естественной влажности II I II III II III
отвердевшие      
Щебень всякий, а также с примесью булыг - - III - I
Пески сухие сыпучие (барханные и дюнные) Вне группы   III Вне группы III

Крутизна откосов траншей под трубопровод и котлованов под трубопроводную ар­матуру принимается по СНиП (табл. 1)

Методы разработки грунтов определяют в зависимости от параметров земляного со­оружения и объемов работ, геотехнических характеристик грунтов, классификации грунтов по трудности разработки, местных условий строительства, наличия землеройных машин в строительных организациях.

Классификация грунтов по трудности разработки приведена в табл. 2.

Расчет объема земляных работ при строительстве магистральных трубопроводов

1. Определяется объем земляных работ при разработке траншей с откосами:

V = [(B, + B2)/2].L.H, м3 V= 2Н + пН2) .L, м3

где В1 ширина траншеи по верху, м;

B2ширина траншеи по низу, м;

L – длина траншеи, м;

Н – глубина траншеи, м;

п – коэффициент откоса (табл. 1)

Задача 2

Изоляционное покрытие стальных трубопроводов независимо от конструкции, ме­тодов нанесения, способов укладки, применяемых материалов должно обеспечить защиту нефте-, газои нефтепродуктопроводов от подземной (почвенной) и атмосферной коррозии и безаварийную их работу (по причине коррозии) на весь планируемый период эксплуата­ции. Для защиты трубопроводов от коррозии применяют следующие изоляционные покры­тия: битумно-резиновые или битумно-полимерные; из полимерных липких лент (отечест­венных и импортных), полиэтиленовые, наносимые в заводских условиях: эпоксидные; ла­кокрасочные.

Изоляционные материалы, применяемые для защиты трубопроводов от коррозии, должны соответствовать требованиям действующих ГОСТ, ОСТ, СНиП и ТУ.

Таблица 3. Техническая характеристика изоляционных лент

  Прочность при растяжении единицы ширины, МПа Удлинение при разрыве, % Масса 1м2, кг
Тип материала (страна изготовитель) Толщина, ли
Общая Основы Адгезия
Поликен 980-25 (США) 0,635 0,330 0,305 0,620 0,664
Плайкофлекс 450-25 (США) 0,635 0,330 0. 305 0,625 0,664
Тек-Рап 240-25 (США) 0,635 0,330 0,305 0,536 0,735
Нитто 53-635 (Япония) 0.635 0,380 0.255 0,760 0,692
Фурукава Рапко НМ-2 (Япония) 0,640 0,340 0,300 0,7 0,648
Альтене 100-25 (Италия) 0,635 0,330 0,305 0,620 0,664
Пластизол (Югославия) 0,630 0,330 0.330 0,760 0,655
Кил (Болгария) 0. 630 0,330 0,300 0,6 0,800
Обёртки
Поликен 955-25 (США) 0.635 0,508 0,127 4,50 0,653
Плайкофлекс 650-25 (США) 0.635 0,5 0,135 4,47 0,640
Тек-Рап 260-25 (США) 0,635 0,5 0,135 4,47 0,680
Нитто 56 РА-4 (Япония) 0,635 0,535 0,1 0,670
Фурукава Рапко РВ-2 (Япония) 0,640 0,5 0,140 0,633
Альтене 205-25 0,635 0,508 0,127 4,50 0,653
Пластизол (Югославия) 0,635 0,5 0,135 0,655
        

Таблица 4. Техническая характеристика полимерных липких лент

Показатели Поливинилхлоридная ПИЛ ТУ 6-05-1801-76 Поливинилхлоридная МИЛ ПВХ- СЛ ТУ51-518-72 Полиэтиленовая ПЭЛ
Ширина рулона, мм 400,450,500 400-450 100-500
Толщина пленки, мм 0.3 0,35 0.3
Длина в рулоне, м (не менее)
Масса 1 м2. г.
Сопоставление разрыву, кгс/см (не менее) -
Относительное удлинение при разрыве, % -
Удельное электросопротивление при 20 С, Ом-м 1*1011 1*1010 1*1016
Морозостойкость, С -30 -20 -25
Температура нанесения, С -12 -25
Эксплуатация при температуре окружающего воздуха, С -30-50 -20-30 -20-30
Приклеивающий состав (клей) Перхлорвиниловый Перхлорвиниловый Полиизобутиленовый

Расчет расхода полимерных лент для изоляции строящегося трубопровода:

1. Определяется расход полимерных лент и рулонных материалов для защитной обертки: G=kн·kп·π·D·L·P , кг

где kн коэффициент, учитывающий величину нахлёста; при однослойной изоляции kн = 1,09; при двухслойной изоляции kн= 2,30;

кп– коэффициент,учитывающий потери изоляционной ленты или оберточного материала при смене рулонов, обрывах, торцовке и т.п.; кп = 1,08;

D – наружный диаметр изолируемого трубопровода, м.; L– длина изолируемого трубопровода, м.;

Р – масса 1 м ленты или оберточного материала (табл. 3, 4).

2. Определяется площадь поверхности лентыили оберточного материала на трубе: Sл=π · D · L· В / (В· п), м2,

где В – ширина рулонного материала, м; (табл. 3 и 4)

п – ширина нахлеста, м. ([6]. с. 320).

Грунтовка, изоляционное покрытие, армирующий и оберточные материалы наносят на трубопровод за один проход очистной и изоляционной машин. Изоляционные и оберточные ленты наносят на трубопровод без перекосов, морщин, отви­саний со следующей величиной нахлеста: для однослойного покрытия — не менее 3 см; для двухслойного – на 50 % ширины ленты плюс 3 см.

Оценка объемов земляных работ | Профилирование и раскопки

Формулы и методы определения объемов и площадей правильных форм и поверхностей восходят к Древней Греции. Пифагор и другие математики определили те формулы, которые до сих пор используются для вычисления объемов сфер и пирамид, а также площадей кривых конических сечений. Но то, что для греков было вопросом мистической философии, для подрядчиков земляных работ было вопросом финансовой жизни или смерти. Это не преувеличение. Точная оценка объемов и площадей земляных работ необходима подрядчику как для подачи точной заявки, которая может выиграть контракт, так и для надлежащего управления ресурсами, выделенными для проекта, чтобы он получал прибыль. Поскольку в любом расчете оценки земляных работ есть неотъемлемая ошибка, подрядчик должен правильно управлять полученными неизвестными, чтобы обеспечить успех проекта.

Источники ошибки измерения — карта не является местностью
«Чем точнее карта, тем больше она напоминает территорию. Самой точной картой будет территория, а значит, она будет совершенно точной и совершенно бесполезной». – Нил Гейман

Фотографии: Trimble
Трехмерное изображение, созданное Timble Software

Ничто не может быть точным на 100%. Ни измерения, ни карты, ни плана, ни диаграммы. И не должно быть. Они используются только в зависимости от того, насколько хорошо они соответствуют реальной местности или структуре, которую они представляют. Однако зная, что это так, мы должны принять во внимание последствия этого врожденного несовершенства измерений, полученных с помощью карты. А для этого мы должны понять источники потенциальных ошибок и минимизировать их, насколько это возможно, сохраняя при этом полезную модель рассматриваемого сайта.

Изучите все, от правил OSHA до высокотехнологичного оборудования для обеспечения безопасности, в этом БЕСПЛАТНОМ специальном отчете: Темы безопасности строительства, которые могут спасти жизни. Скачайте прямо сейчас!

Каковы источники ошибки измерения? Начните с самого первичного обследования. Существует три основных категории первоначальных ошибок геодезиста: инструментальные, личные и естественные. Погрешность прибора возникает из-за фактического несовершенства изготовления самого геодезического прибора или из-за первоначальной настройки геодезиста при настройке прибора. Температура окружающей среды может влиять даже на простые геодезические инструменты, такие как измерительные ленты, в результате чего лента становится либо длиннее, либо короче, чем должна быть. Личная ошибка возникает из-за того, что геодезист всего лишь человек. Человеческое зрение и память несовершенны, что может привести к неправильному чтению или ошибочной записи полевых измерений. Как упоминалось выше, тепло может влиять на измерения, и это только один из источников естественной ошибки. К другим источникам естественных ошибок относятся влажность, сила тяжести, ветер, рефракция, кривизна выравнивания площадки и магнитное склонение, все из которых могут повлиять на приборы съемки.

Но еще до появления ошибок в полевых измерениях сама основа съемки может быть ошибочной. Это ранее установленные контрольные точки, которые привязывают весь обзор объекта к местным топографическим данным и самому реальному миру. Все точки отсчета, расположенные рядом с участком, должны быть проверены перед обследованием на точность и достоверность. В идеале, по три каждого «третьего порядка» (имеющие наивысшую установленную точность) должны служить основой для наземной съемки, но хотя бы один такой репер необходим. Если нет другого варианта, исследование может опираться на «относительный ориентир», такой как угол здания или крышка люка. Присвоение произвольной высоты, например 100 футов, такой точке может позволить измерить высоту относительно этого импровизированного ориентира. Но этот специальный подход по своей сути менее точен, и его никогда не следует использовать для критических обследований участков.

Добавьте Подрядчик по профилированию и земляным работам Еженедельно  в свои настройки информационного бюллетеня и будьте в курсе последних статей о планировке и земляных работах: строительное оборудование, страхование, материалы, безопасность, программное обеспечение, грузовики и прицепы.

Для проверки контрольных точек может потребоваться либо региональное исследование, чтобы связать каждую контрольную точку с известными точками, либо тщательный поиск записей предыдущих обследований собственности и сертификатов контрольных точек. Этот поиск записей имеет жизненно важное значение и фактически должен быть первым шагом, выполняемым в любом обследовании сайта. Тщательный поиск записей также позволит выявить информацию о прошлой деятельности на площадке, которая могла изменить существующую поверхность с момента последней предыдущей съемки, о существовании и расположении подземных инженерных коммуникаций, которые могут помешать запланированным земляным работам, а также о гидрогеологических каротажных журналах, которые определяют слои почвы. и подъем грунтовых вод под поверхностью участка. Местоположение и высота каждого устья скважины также должны быть записаны, что позволит в дальнейшем проверить точность съемки. Другие обследования участков могут очертить особые области воздействия, такие как карстовый рельеф или охраняемые водно-болотные угодья.

Представления Trimble 3D и срезов

Даже самый тщательный поиск записей бесполезен без ботинок на земле, выполняющих физические обходы на месте до начала съемки. Просто нет замены старой доброй физической разведке участка. Множество деталей участка, связанных с новой растительностью, недавними активистами, меняющими участок, и областями эрозии, не появятся даже в самом последнем обследовании участка или не будут описаны в самой последней записи участка. Таким образом, даже в эпоху лидаров и AutoCAD нет замены человеческому наблюдению.

Оценщики также должны учитывать влияние самих земляных работ на объемы грунта. На самом деле существует три типа объемов почвы: объемы берегов, рыхлые объемы и уплотненные объемы. Объемы банка – это измерения количества почвы, уже находящейся в земле. Это прямые измерения между существующими уровнями и предлагаемыми уровнями раскопок. Насыпными объемами называются объемы грунта, не нарушенные при выемке и вывозе и размещенные в кузове автосамосвалов или в отвалах в насыпном состоянии. Как правило, для большинства типов грунта предполагается увеличение на 25% (называемое «коэффициентом набухания»), отражающее увеличение общего объема грунта в результате нарушения во время земляных работ. Таким образом, 1 кубический ярд природного грунта на месте превращается в 1,25 кубических ярда на складе или в кузове самосвала. Если этот рыхлый грунт будет повторно использоваться на месте, он будет уплотнен на месте, чтобы получить стабильную структурную засыпку или плотную грунтовую подкладку с низкой проницаемостью. Обычное эмпирическое правило при укладке и уплотнении почвы заключается в том, чтобы сначала распределить ее свободными слоями толщиной 8 дюймов, а затем уплотнить на месте до плотных слоев толщиной 6 дюймов. Таким образом, результирующий уплотненный объем составляет всего 75% от объема рыхлой укладки, и, таким образом, 1,25 кубических ярда рыхлой почвы становится 0,9 м3.4 кубических ярда уплотненной почвы — окончательное сокращение на 6% по сравнению с первоначальным естественным объемом на месте. Это может показаться неважным, но это может быть серьезной и дорогостоящей ошибкой при выполнении крупных земляных работ.

Аэротопография, в отличие от наземной съемки, имеет свои собственные источники потенциальных ошибок. Все аэрофотоснимки подвержены геометрическим искажениям, поскольку они не обеспечивают вид сверху вниз, а представляют собой вид под углом, который является результатом высоты камеры, кривизны земли или некомпенсированного движения воздушной платформы. В результате происходит смещение рельефа, когда здания и другие крупные объекты могут быть нечетко видны на топографической карте. И даже самая точная аэротопографическая карта имеет точность только до половины наименьшего контурного интервала карты. Таким образом, карта, показывающая интервалы контура высоты в 1 фут, будет иметь точность высоты только плюс-минус 0,5 фута.

Ошибки опроса могут накапливаться, и их невозможно полностью избежать. Ничто не является точным на 100%, да и не должно быть таковым, при условии, что количество и степень ошибок опроса строго сведены к минимуму. Например, серия всего из трех измерений с погрешностью всего лишь в 10 % снизит общую точность исследуемого элемента до уровня менее 75 %. Даже когда ошибки сведены к минимуму или их удалось избежать, результат все равно остается интерполяцией, а не реальностью. Некоторые наилучшие предположения лучше других, и, в конце концов, самое большее, на что может рассчитывать оценщик, — это наилучшее возможное предположение.

В основном потому, что точность и аккуратность — не одно и то же. Предположение, что они похожи, является распространенной ошибкой даже опытных земляных рабочих. Точность определяется как количество единиц, которые используются для описания значения (измерение, записанное с точностью до одной тысячной фута, точнее, чем одна только одна десятая фута). Точность, с другой стороны, определяется тем, насколько близко измерение к реальному значению измеряемой характеристики. Оценщики должны сосредоточиться на достижении высокой степени точности, помня при этом обо всех тех факторах, которые делают невозможной достижение 100% точности в реальном мире.

Итак, как наилучшим образом решить эти проблемы с точностью и полнотой? По словам Алана Шарпа из Trimble, «когда дело доходит до оценки объемов земляных работ, клиенты ищут: 1) возможность интеграции данных из многих источников — систем проектирования, бумажных планов, файлов PDF, машинных данных, данных дронов, сканеров и геодезические системы; 2) более плавные и простые рабочие процессы и целостный подход ко всем связанным процессам вокруг общей конструктивной трехмерной модели; 3) Конструктивные модели, которые они могут построить с использованием автоматизированных методов — независимо от того, что они делают — уплотнение, мощение, планировку, рытье траншей, буровзрывные работы и т. д.; 4) Более интеллектуальные отчеты со всеми необходимыми данными в простых, удобных для чтения отчетах; 5) Инструменты презентации, которые позволяют поддерживать процесс и предложение с помощью четких графиков и хорошо документированных планов работы, которые они могут использовать для успешного выигрыша большего количества предложений; 6) Конструктивные модели для отслеживания и мониторинга хода проекта, улучшения ключевых показателей эффективности и оптимизации рабочих процессов строительства; 7) Удаленная видимость проектов по мере их реализации; 8) Непрерывный и эволюционный процесс через процесс взлета, оценки, подачи заявок, планирования, эксплуатации/выполнения, как построено, процесс передачи; и 9) Возможность использовать информацию, полученную по одному проекту, в последующих проектах, чтобы уточнить предложения с большей уверенностью и снизить проектный риск».

Измерение площадей — плоские поверхности в сравнении с наклонными
Метод треугольной площади. Предлагаемый участок земляных работ должен быть определен границей. Граница будет охватывать все области раскопок и насыпи. В результате получается правильный (квадрат, прямоугольник и т. д.) или неправильный многоугольник. Но даже самый неправильный многоугольник можно разбить на набор отдельных треугольников с разными площадями, длинами сторон и углами углов. Зная расположение (север и восток) каждого угла треугольника, оценщик может затем вычислить площадь отдельных треугольников. Затем общую плоскую площадь участка можно рассчитать путем сложения суммы всех отдельных треугольников. Метод площади треугольника равен 9.0006 рассчитывается следующим образом:

A = sqrt[s * (s – a) * (s – b) * (s – c)]

Где:

  • A = площадь треугольной области (квадратные футы)
  • a, b, c, = длины трех сторон треугольника (в футах)
  • с = (а + b + с) / 2

Метод интервала длины. Метод длины интервала лучше всего использовать для участков с плоскими склонами или склонами с постоянными, регулярными уклонами, но с очень неравномерными границами. Интервалы устанавливаются перпендикулярно базовой линии, которая была выровнена по мере необходимости для максимально точного расчета площади. Длина каждого интервала простирается от места, где интервал пересекает одну сторону границы области, до места, где он пересекает противоположную сторону границы. Метод интервала длины рассчитывается следующим образом:

A = D * ((L1 + L2) / 2)

Где:

  • A = площадь (квадратные футы)
  • L = длина смежных интервалов (футы)
  • D = расстояние между интервалами вдоль базовой линии (футы)

 

Другой трехмерный вид, созданный Trimble Software

 

CF-картирование с увеличением

Измерение объемов — зажатый между двумя поверхностями
Так как же оценщики вычисляют объем между двумя поверхностями? Это может быть очень сложным процессом, так как величина изменения высоты поверхности почвы может значительно и неравномерно варьироваться по участку. Первая поверхность обычно представляет собой топографию существующей площадки, а вторая показывает уклон площадки после строительства. Уровни после строительства могут быть результатом раскопок (выемки) существующего грунта, размещения (засыпки) дополнительного грунта или некоторой комбинации этих двух факторов. Объемы, необходимые для размещения почвы, обычно обозначаются как положительные объемы, а объемы, полученные в результате земляных работ, рассматриваются как отрицательные объемы. Полученные числа можно сложить вместе, чтобы получить баланс от сокращения до заполнения для сайта. Хорошо спроектированный сайт (если это возможно) приведет к сбалансированному сокращению, чтобы заполнить чистый объем двух равных нулю. В зависимости от характера объекта и предлагаемых земляных работ существует несколько вариантов точной оценки итоговых объемов земляных работ.

Метод площади глубины.  Участки с постоянной толщиной от выемки до насыпи можно оценить по объему с помощью простого расчета по методу глубины и площади. При таком подходе площадь участка умножается на толщину предполагаемых земляных работ. Типичными примерами этого являются разрезы или насыпка для создания основания для последующей укладки дорожного покрытия, заполнение ранее существовавшей фундаментной ямы с плоским дном, снятие верхнего слоя почвы на постоянную глубину, например 6 дюймов, или рытье траншей с постоянной шириной и глубиной ниже уклоны поверхности по всей длине предлагаемого подземного трубопровода. Сама существующая поверхность не обязательно должна быть плоской (хотя это повысило бы точность оценки), если результирующая поверхность параллельна уклонам и возвышениям существующей поверхности. Но при расчете участка со значительным уклоном необходимо учитывать влияние уклона. Например, участок с плоской площадью — если смотреть вниз прямо сверху, как на карте или в плане — может иметь площадь 1 000 000 квадратных футов (квадрат размером 1 000 футов на 1 000 футов). Однако, если эта область не плоская, а вместо этого имеет уклон 25% (1 по вертикали к 4 по горизонтали) в одном направлении, то ее фактические размеры составляют приблизительно 1031 фут на 1000 футов, в результате чего фактическая площадь поверхности составляет 1 031 000 квадратных футов. Это может показаться небольшим, но в крупных проектах такая разница в процентах может привести к значительным изменениям в общей оценке объема, что в дальнейшем может привести к значительным расходам денег сверх первоначальной сметы. Метод площади глубины рассчитывается следующим образом:

V = T * A * (1/27)

Где:

  • V = объем (куб. ярды)
  • A = площадь поверхностного склона (квадратные футы)
  • T = толщина пласта или ровного разреза (футы)

Метод сетки.  Метод сетки обычно используется для оценки объемов, извлеченных из карьеров (его часто называют методом карьеров). Как и метод определения глубины, метод сетки использует измерения толщины на заданной площади. Тем не менее, толщина может варьироваться в зависимости от объекта, и рассматриваемые области представляют собой ряд точек сетки, размещенных через одинаковые интервалы и ориентированных на определенную трассу (север-юг, граница участка, трасса проезжей части и т. д.). Каждая точка сетки рассматривается как центр квадрата, сторона которого равна стороне интервала сетки (например, 10 футов на 10 футов для сетки с интервалами 10 на 10 футов). Уклон поверхности внутри самого квадрата сетки учитывается и аппроксимируется путем присвоения измеренных или предполагаемых отметок каждой из угловых точек квадрата. Квадрат рассматривается как столбец, который идет прямо вниз (или вверх) вертикально через предлагаемую выемку грунта (или размещение насыпи), где четыре угла совпадают с соответствующими углами, расположенными на предполагаемой поверхности. Затем можно провести измерения, чтобы определить глубину выреза или засыпки в каждом углу (снова сохраняя отрицательные расстояния выреза и положительные расстояния засыпки).

Четыре значения глубины затем усредняются путем их сложения и деления на четыре. Это дает усредненную глубину квадрата сетки, которую затем можно просто умножить на площадь квадрата, чтобы определить объем столба грязи в данной точке сетки. Излишне говорить, что точность можно повысить, уменьшив интервалы сетки и используя все более мелкие квадраты. Однако количество результирующих квадратов как квадрат интервала уменьшается (уменьшение интервала наполовину увеличивает количество квадратов, которые необходимо вычислить, в четыре раза, уменьшение интервала на треть увеличивает количество квадратов на коэффициент девять и др.). Метод площади сетки рассчитывается следующим образом:

V = ((D1 + D2 + D3 + D4) / 4) * A * (1/27)

Где:

  • V = объем (куб. ярды)
  • A = площадь квадрата сетки
    (квадратный фут)
  • D = глубина выемки/засыпки на каждой сетке
    угол (футы)

Метод конечной площади.  Вместо расчета объемов сверху вниз от существующей поверхности к предлагаемой поверхности, метод конечной площади рассчитывает объемы с помощью вертикальных срезов, прорезанных через равные промежутки времени через заполненные или вырезанные пространства. Срезы выравниваются перпендикулярно базовой линии, проходящей по всей длине участка земляных работ. Обычно это самый длинный размер участка для повышения точности, но его также можно выровнять по линии собственности или тракта, коммунальному сервитуту, полосе отвода, осевой линии проезжей части и т. д. Интервал между параллельными фрагментами может варьироваться в зависимости от размера участка. и расчетная точность расчета. Объем массивной застройки площадью 1000 акров можно было рассчитать с достаточной точностью с интервалами от 100 до 200 футов. Небольшой квадратный участок площадью менее 10 акров (660 футов на 660 футов) не сможет обеспечить разумную точность с таким большим интервалом, так как будет использоваться только шесть секторов. Как правило, чем меньше участок, тем меньше требуемый интервал между срезами.

Вывод листа из Trimble Software

Хотя эти срезы можно нарисовать (и рисовали в прошлом) вручную, проще всего нарисовать эти срезы с помощью программы AutoCAD, которая создает поперечные сечения, а затем определяет площадь каждого среза. Обратите внимание, что иногда вертикальный размер преувеличен для визуальной ясности рисунка. Часто это в пять или 10 раз больше, чем размер по горизонтали (например, 1 дюйм по горизонтали равен 100 футам, а 1 дюйм по вертикали равен 20 футам, что приведет к пятикратному увеличению рисунка по вертикали. Необходимо позаботиться о том, чтобы результирующее при расчете площадей срезов это преувеличение учитывается, а не просто прямое измерение площади на чертеже, что позволяет избежать увеличения площади среза в пять раз. Как всегда, площади срезов отрицательны, а области заполнения – положительны. Поперечное сечение площади можно определить вручную, но обычно они рассчитываются в программе AutoCAD либо с помощью метода треугольной площади, если сечения простые и правильные, либо с помощью метода интервала длины, если форма поперечного сечения неправильная и сложная. Метод конечной площади рассчитывается следующим образом:

V = L * ((A1 + A2) / 2) * (1/27)

Где:

  • V = объем (куб. ярды)
  • A = площади смежных секций креста
    (квадратных футов)
  • L = расстояние между поперечными сечениями по базовой линии (футы)

Формула призмы. Призмовидная формула является усовершенствованием метода конечной площади и часто необходима, если существующая земная поверхность сильно неравномерна в полосах площади между соседними интервалами срезов. С помощью этого метода оценщик добавляет дополнительное поперечное сечение посередине между двумя поперечными сечениями, ограничивающими неровную поверхность (обратите внимание, что этот метод не обязательно выполнять для каждого интервала на участке — только для участков с локализованными неровностями). Площадь этого половинного поперечного сечения рассчитывается отдельно, а не является просто средним значением двух соседних поперечных сечений. Призмовидная формула рассчитывается следующим образом:

V = L * ((A1 + (4 * Am) + A2) / 6) * (1/27)

Где:

  • V = объем (куб. ярды)
  • A1, A2 = площади смежных сечений (квадратные футы)
  • Am = площадь среднего поперечного сечения (квадратные футы)
  • L = расстояние между поперечными сечениями по базовой линии (футы)

Метод площади контура. Метод контурной площади использует контурные линии высот, нанесенные на топографическую карту участка, и линии уклона, нанесенные на предлагаемый план участка, для расчета объемов выемки и насыпи участка. Этот метод во многих отношениях является более простым способом расчета объемов по сравнению с методом конечной площади, поскольку нет необходимости в дополнительных чертежах и поперечных сечениях. Традиционно измерение площадей, ограниченных контурными линиями высот, выполнялось вручную планиметром, прикрепленным к чертежной доске. Объемы рассчитываются путем усреднения площади соседних отметок изолинии и умножения среднего значения на разность высот (метод, почти идентичный методу конечной области, только ориентация областей горизонтальная, а не вертикальная). Метод площади контура рассчитывается следующим образом:

V = H * ((A1 + A2) / 2) * (1/27)

Где:

  • V = объем (куб. ярды)
  • A = площади смежных горизонталей высот (квадратные футы)
  • H = перепад высот между контурами (футы)

Методы триангулированной нерегулярной сети (TIN) и цифровой модели местности (DTM).  Метод триангулированной нерегулярной сети использует файлы, созданные AutoCAD (файлы .tin) на топографических поверхностях, для определения объемов. Эти поверхности состоят из треугольников, созданных программным обеспечением из точек полевой съемки, которые оно графически соединяет с другими соседними точками (с точки зрения горизонтального расстояния, а не перепада высот), чтобы сформировать ряд неправильных треугольников, которые покрывают поверхность, как грани на поверхности. драгоценность. Это, в свою очередь, позволяет создавать высокоточные цифровые модели местности. Учитывая огромное количество необходимых вычислений, это процесс, который можно выполнить только на компьютере. ЦМР позволяют проводить прямые расчеты между поверхностью и фиксированной отметкой или двумя такими поверхностями. ЦМР также можно создавать для различных слоев грунта при раскопках, что позволяет напрямую рассчитывать объемы для каждого типа грунта.

Измерительное программное обеспечение и системы — основные поставщики
Roctek International производит программное обеспечение WinEx-GRADE и WinEx Master, которое оценивает объемы выемки и насыпи с использованием метода сетки высокой плотности. Они предлагают несколько функций, уникальных для своей линейки продуктов, таких как Vector Direct, LineTracker и Alternate Plan. Утилита импорта Vector Direct может практически исключить трассировку из файлов Vector PDF и CAD, импортируя как линии, так и отметки. LineTracker значительно повышает эффективность трассировки, находя ближайшую линию и привязываясь к ней. Это позволяет пользователю рисовать быстрее, не теряя точности даже из-за перекрывающихся линий и выносок. Альтернативный план позволяет использовать неограниченное количество страниц с разным масштабом в рамках одной выборки. Профессиональные инструменты аналитики и визуализации позволяют оператору просматривать весь план участка в 3D, а высота «укажи и щелкни» показывает, что именно происходит в любой точке. Дополнительные специализированные функции включают в себя: экспорт в GPS, количество грунтового основания для любой рабочей зоны, процедуры перекопки, подпорные стены, процедуры одиночных и связанных точек, процедуры снятия верхнего слоя почвы и повторного распределения, информацию о слоях пластов из каротажных журналов, срезы поперечных сечений. под любым углом, расширенные процедуры траншеи для подземных коммуникаций и расширенные возможности балансировки площадки. Roctek остается на переднем крае технологий благодаря частым обновлениям, ориентированным на пользователей, и предлагает непревзойденное обслуживание клиентов, предоставляя квалифицированную техническую поддержку пользователям всех уровней опыта. Как отметил один из клиентов: «Программное обеспечение WinEx Master от Roctek создано для удовлетворения ВСЕХ потребностей резки и заполнения. Это мощный инструмент с превосходными инструментами отчетности, оцифровки и визуализации. С таким количеством функций вы не сможете научиться за одну ночь, но выдающееся обслуживание клиентов! Они бы оставались с вами на экране всю ночь, если бы вам нужно было быстро их выучить».

Компания Vertigraph, Inc. предоставляет BidScreen XL в качестве дополнительного программного обеспечения, которое документирует объем продаж в Microsoft Excel. Bidscreen XL идеально подходит для любой торговли. Такое сочетание обеспечивает гибкость и простоту. При загрузке BidScreen XL весь процесс измерения и расчета количества выполняется непосредственно в Microsoft Excel, при этом все данные сохраняются в рабочей книге Excel. Он работает с основными типами векторных и растровых файлов, такими как PDF, DWG, DXF, TIFF и т. д. Функции и формулы, размещенные в электронной таблице Excel, позволяют рассчитывать количества и оценивать ставки на основе измерений BidScreen XL. Сопутствующая программа SiteWorx/OS (более применимая к подрядчикам по земляным работам, чем приложение BidScreen XL) создает модели поверхности и рассчитывает объем земляных работ на площадке.

По словам Sharp, их достижения в оценке и торгах можно увидеть в их стартовом программном обеспечении, таком как Trimble Business Center, HCE, которое используется для оцифровки и моделирования данных из бумажных планов, растровых PDF-файлов, векторных PDF-файлов или файлов САПР. . Их программное обеспечение может использовать все детали конструкции, включенные в строительные документы и спецификации, включая скважины, слои слоев, зоны сноса, инженерные траншеи и детали инженерных коммуникаций, а также материалы и глубину улучшения площадки для площадок, парковок и озеленения дорог, чтобы построить детальная смета объемов по проекту.

После того, как количество определено, модели и местоположения количества могут быть преобразованы в оценку рабочего процесса, чтобы определить, как будет выполняться проект, когда будет выполняться каждый шаг, сколько времени займет каждый шаг и какое оборудование и персонал будут задействованы. быть обязательным. Затем программное обеспечение может анализировать поток материалов вокруг проекта и может использоваться для определения оптимального способа выемки или размещения грунта. Оптимизация может включать тип и количество оборудования, включая сопутствующие эксплуатационные расходы, такие как топливо, операторы, техническое обслуживание и время, а также затраты на мобилизацию. Например, функция массовых перевозок в Business Center-HCE предоставляет передовые методы для определения оптимальных процессов при наименьших затратах на строительство. Затем эти результаты могут быть объединены в пакет оценки подрядчика для проведения детальной оценки с учетом того, что были оценены передовой опыт и оптимальные количества.

Затем эти данные можно объединить в программу планирования, которая может преобразовывать количества и расстояния перевозки в зависимости от производительности и назначенных ресурсов для создания графика времени и местоположения. Trimble TILOS — это усовершенствование традиционных процессов планирования, основанное на технологии диаграмм ГАНТТ, где список действий может быть указан с указанием начала, окончания и продолжительности, но не с указанием того, где в проекте и в каком направлении вы работаете. Традиционные пользователи диаграмм ГАНТТ не могут надежно применять сезонные или экологические ограничения. Они также не могут видеть влияние конфликтующих операций, потому что традиционные решения для планирования не содержат геопространственных элементов, необходимых для просмотра того, что происходит, где, когда и с какими ресурсами. Однако TILOS объединяет все эти элементы и может представлять информацию о расписании как традиционными способами, так и в виде диаграммы «время-местоположение». Эта диаграмма времени и местоположения может представлять на одной странице всю информацию, обычно включаемую в диаграмму ГАНТТ. Диаграмма «время-местоположение» также может использоваться для представления хода выполнения работ по проекту. Система TILOS интегрируется с системой массовых перевозок Business Center-HCE, что позволяет автоматически планировать смету проекта на диаграмме «время-местоположение».

После того, как предложение выиграно, подрядчик переходит к этапу эксплуатации. Традиционно на этом этапе создаются более подробные модели, а оценочная модель обычно отбрасывается. Используя технологию Trimble, оценочная модель просто повторно открывается и при необходимости улучшается, и ее можно быстрее развернуть для управления строительными работами благодаря беспрепятственному подключению к полевым системам для съемки, позиционирования площадки, проверки уклона и управления машинами. Единая конструируемая модель может быстро мобилизовать самые сложные проекты, связывая их с системами Trimble или сторонних производителей, а также с OEM-системами. Сближение сметных и оперативных команд с помощью общих инструментов чрезвычайно важно для обеспечения конкурентоспособности в тендерах на строительство.

Получить объемы земляных работ схемы трубопроводной сети

18 мая 2010 г., 13:12

Во время одного из моих учебных занятий по упражнению с сетью трубопроводов один из моих студентов спросил меня, как рассчитать земляные работы (объемы выемки), необходимые для прокладки сети трубопроводов, которая спроектирована рядом с центральной линией проезжей части или прикреплена к ней.
При подготовке к этому курсу я думал, что это сложная тема, но также понял, что это можно сделать, создав еще один коридор.

Обычно при проектировании трубопроводной сети вы начинаете с трассы, профиля, узла и, наконец, коридора. И, конечно же, поверхность существующей земли должна быть на месте. Это тот же процесс, что и при проектировании проезжей части.
Но в этом случае у вас уже есть трасса проезжей части и рядом с ней привязана разводка трубопроводной сети.
Итак, как мне рассчитать земляные работы, необходимые для этой сети трубопроводов? Использую ли я такое же выравнивание?

На самом деле вам нужно создать еще один коридор для трубопроводной сети, как вы создали коридор для проезжей части.
Но теперь ваша трасса не является осевой линией проезжей части, вместо этого в качестве трассы будет использоваться осевая линия вашей сети трубопроводов.

Итак, после размещения трубопроводной сети на виде в плане и на виде профиля вам необходимо выполнить следующие шаги перед созданием другого коридора.

  1. Создайте трассу для ваших труб или трубопроводной сети.
  2. Создайте новый профиль, взяв за основу нижнюю часть трубопроводной сети.
  3. Создайте новую сборку для сети трубопроводов.
  4. Построен другой коридор (и поверхность коридора) на основе вышеперечисленных элементов.

Эти 4 шага будут более подробно описаны ниже:

1) Перейдите на ленту, вкладку «Главная», панель «Создать дизайн», перейдите в раздел «Выравнивание» и выберите команду «Создать выравнивание из частей сети».

Команда предложит выбрать конструкции и/или трубы, которые будут частью трассы.
По завершении команда запросит имя трассы, описание и примененные стили, которые ничем не отличаются от тех, которые используются при создании трассы проезжей части.
Но теперь вы найдете ниже дополнительную опцию для создания профиля и вида профиля сразу после создания трассы:

При нажатии кнопки «ОК» откроется диалоговое окно «Создать профиль из поверхности»:

Добавьте все нужные поверхности в свой профиль и нажмите «Рисовать в виде профиля».
Перейдите к отображению трубопроводной сети, чтобы проверить ранее выбранные трубы и конструкции.

Теперь нажмите «Создать вид профиля», чтобы создать вид профиля на чертеже.

2) Перейдите на ленту, вкладку «Главная», панель «Создать дизайн», перейдите в «Профиль» и выберите команду «Инструменты создания профиля»:

Создайте профиль компоновки с помощью команды «Касательные», следуя нижней части труб и/или конструкций.

3) Следующим шагом является создание сборки для трубопроводной сети (в данном случае и для простоты только для труб). Я использовал стандартную сборку TrenchPipe1 с отрегулированными параметрами ширины и уклона дна.

4) Теперь создайте коридор с трассой трубопроводной сети, вновь созданным профилем и вновь созданной сборкой.
В зависимости от того, что вы хотите рассчитать, выберите правильные цели для строительства этого коридора. В этом случае, а также на самом верхнем изображении, я использовал существующую землю в качестве целевой поверхности.