Отзывы о полуавтоматах сварочных инверторных: 14 лучших сварочных полуавтоматов — Рейтинг 2023 года (Топ 14)
Отзывы о сварочных полуавтоматах (MIG-MAG) от реальных покупателей | Рейтинг моделей 2022 года
Отзывы о инверторном сварочном аппарате FUBAG INMIG 315 T
115 340 ₽
Описание товара
Все отзывы о товаре
Алексей Смирнов
Оценка/рейтинг:
2022-06-29
Общее впечатление
Отличный , надёжный аппарат . Удобные настройки . В эксплуатации 4 года .
Отзывы о сварочном аппарате FUBAG IRMIG 160
25 850 ₽
Описание товара
Все отзывы о товаре
Худобин Александр
Оценка/рейтинг:
2020-10-19
Достоинства
Варит оочень мягко
Недостатки
Качество сборки
Общее впечатление
Хороший сварочный аппарат ,главное чтоб не подделка
Отзывы о сварочном аппарате РЕСАНТА САИПА-200
28 090 ₽
Описание товара
Все отзывы о товаре
Пётр Савченко
Оценка/рейтинг:
2020-08-10
Достоинства
Можно проводить тонкие сварные операции
Недостатки
В некоторых случаях без газа не обойтись
Общее впечатление
Из сварочных полуавтоматов один из самых доступных. Это конечно не профессиональный аппарат, но на бытовом уровне в умелых руках с его помощью можно неплохо варить кузовные детали. Я им даже старую 250-литровую бочку аккуратно заварил, чего обычным инвертором не смог бы сделать никогда. С аргоном можно варить и нержавейку и медные сплавы.
Отзывы о сварочном аппарате РЕСАНТА САИПА-220
33 790 ₽
Описание товара
Все отзывы о товаре
Владимир С.
Оценка/рейтинг:
2020-07-18
Достоинства
Очень хорошее, мобильное решение!) Для дома, гаража – в самый раз!
Недостатки
Рукав и провод массы лучше сменить на более надежные варианты, но в целом, в принципе, неплохо!
Общее впечатление
Хороший аппарат! использую меньше месяца, но еще ни разу не подвел) Если вы имеете опыт работы получить хороший и красивый шов – можно!)
Отзывы о сварочном аппарате FUBAG IRMIG 180
27 960 ₽
Описание товара
Все отзывы о товаре
Влад В.
Оценка/рейтинг:
2020-02-21
Достоинства
Варит отлично диаметром до 0,8, порадовала добротная горелка в комплекте
Недостатки
Отсутствие автоматических программ для настройки :(. Нужно выйти из категории чайников, чтобы приловчиться ручками ловить настройки))
Общее впечатление
Пожалел, что сэкономил 2 тыс руб и не купил сразу с синергетикой аппарат, которым можно и электродами варить и проволокой, ну и одна автоматическая программа настройки самая нужная для этой варки FUBAG IRMIG 180 SYN.
Отзывы о сварочном аппарате FUBAG INMIG 200 PLUS
49 840 ₽
Описание товара
Все отзывы о товаре
79284128280 К.
Оценка/рейтинг:
2019-11-14
Достоинства
За 4 года эксплуатации вышел из строя только вентилятор.
Недостатки
В комплекте нет рукава TIG , я считаю комплектацию не полной. Если аппарат работает на трёх режимах то должна быть вся комплектация.
Отзывы о инверторном сварочном аппарате РЕСАНТА САИПА-190МФ
35 190 ₽
Описание товара
Все отзывы о товаре
Семён Р.
Оценка/рейтинг:
2019-09-10
Достоинства
Легкий по весу, им просто работать, не перегревается, функциональный.
Недостатки
Не нашел.
Общее впечатление
Аппарат приобрел для работы, очень нравится. Получаются ровные швы, мягко варит, Доступный по цене. Использую больше года.
Отзывы о сварочном аппарате FUBAG IRMIG 140
25 970 ₽
Описание товара
Все отзывы о товаре
sss sss
Оценка/рейтинг:
2017-12-14
Достоинства
Цена, комплектация (щиток, щетка), не ломался, работает нормально
Недостатки
Не съемный рукав. Но без проблем заменил направляющую сварочного канала, засорилась
Общее впечатление
Первый мой сварочный, опыта не было, учился на нем. Все понятно, удобно,работает без перебоев.
Какой сварочный полуавтомат лучше инверторный или трансформаторный | Сварочные аппараты | Блог
На вопрос: «Какой сварочный полуавтомат лучше инверторный или трансформаторный?» можно ответить по-разному. Можно коротко: «Исходи из потребности!», а можно аргументированно разобраться в плюсах и минусах каждой технологии сварки, и на основе этого анализа принять взвешенное решение.
При всей кажущейся простоте, сварить несколько металлических элементов — целое искусство. Как в каждом другом деле, для его освоения нужно заручиться теоретическими знаниями, практическими навыками и подходящим инструментарием.
Как работает сварочный трансформатор
Первые трансформаторы появились в конце XIX века, когда электричество стало обычным явлением. В начале XX века было обнаружено, что при помощи трансформатора можно управлять процессом дуговой сварки, что и дало импульс к развитию трансформаторных сварочных аппаратов.
Самый простой, если можно так выразиться, прапрадед сварочных трансформаторов представляет собой две обмотки, заключенные в набранный из изолированных металлических пластин сердечник.
При приложении напряжения на первичную обмотку, по ней начинает протекать ток. Под действием электромагнитной индукции, возникающей в сердечнике трансформатора, электрический ток начинает течь и по виткам вторичной обмотки.
В сварочном трансформаторе число витков вторичной обмотки значительно меньше, чем первичной, а сама обмотка выполнена из проводника большого сечения. В итоге ток, протекающий по вторичной обмотке, имеет значительную величину, достаточную для того, чтобы зажечь и поддерживать горение электрической дуги.
К слову сказать, в 20–30 годы прошлого столетия трансформаторные сварочные аппараты стали обычным явлением на производстве, а к концу Второй мировой войны их использование переживало настоящий бум. С 30-х по 80-е годы XX века в основе всех сварочных аппаратов лежал трансформатор.
Технологии сварки с помощью трансформатора более 100 лет. Она довольно проста, но за это время отточена практически до совершенства.
Регулирование силы сварочного тока осуществляется по-разному:
- введением в цепь реостата;
- механическим изменением расстояния между первичной и вторичной обмотками;
- изменением зазора в магнитопроводе трансформатора.
Как работает сварочный инвертор
Развитие полупроводниковой техники, ее бурный рост и повсеместное использование открыли новую эру в технологии сварки. Свет увидели инверторные сварочные аппараты.
Принцип действия такого аппарата довольно прост. Питающее напряжение, пройдя через выпрямитель, преобразуется в постоянное. В инверторе обратно трансформируется в переменное, но уже высокой частоты (60–80 кГц). После чего происходит процесс повторного выпрямления напряжения, поскольку сварка постоянным током имеет ряд преимуществ.
Использование сварочных токов высокой частоты позволяет избавиться от «лишнего» трансформаторного железа, позволяя тем самым снизить массу и габариты сварочного аппарата.
Именно частота — основополагающий фактор функционирования инверторного сварочного аппарата. С ее помощью производится регулирование сварочного тока — чем ниже частота, тем меньше выходная мощность, а соответственно и сварочный ток.
На заре становления технологии инверторной сварки не обошлось и без разочарований. Первые серийные образцы были крайне капризны к условиям сварки и не очень надежны. Но со временем улучшение схем и элементной базы позволило устранить большинство слабых мест инверторной технологии.
Трансформатор VS инвертор. Плюсы и минусы
Каждая из технологий сварки имеет свои преимущества и недостатки. Рассмотрим подробно самые значимые.
Надежность
Тема, об которую до сих пор ломаются копья и которая разделила сварщиков на два противоборствующих лагеря. Аргументы «трансформаторщиков» — сварочные трансформаторы совершенствуются вот уже более ста лет. Схемотехника аппарата проста, но, тем не менее, доведена до совершенства. Чтобы «убить» такой аппарат — нужно сильно постараться. А вот инверторные модели этим похвастаться пока не могут. Они еще относительно молоды, им есть куда «расти».
Современные реалии таковы, что последний аргумент разбивается в пух и прах появляющейся новой, более надежной элементной базой и постоянным совершенствованием схем инверторных полуавтоматов.
Многофункциональность
В этом аспекте инвертор на голову переигрывает трансформатор. В инверторном полуавтомате благодаря контроллеру можно настроить любую электрическую переменную. Причем ее значение будет отслеживаться и регулироваться постоянно в течение проведения сварочных работ. А это открывает широкое поле деятельности не только при сваривании черных, но и цветных металлов.
Габариты, вес
Из-за массивного железа, принимающего непосредственное участие в трансформации энергии, идущей на сварку, трансформаторные модели тяжелы и громоздки. Даже самый простой аппарат имеет вес, приближающийся к 20 кг.
На их фоне инверторные модели выгодно выделяются. При сопоставимой мощности — они легки и компактны.
Качество дуги и сварных швов
Качество сварного шва — визитная карточка каждого уважающего себя мастера. Чтобы получить хороший шов, помимо твердой руки, нужно иметь аппарат, который будет удерживать параметры тока на заданной величине. Не секрет, что самые простые трансформаторные модели сильно зависимы от изменения величин питающего напряжения. При его просадках — снижается сварочный ток, и мастеру приходится уменьшать зазор между деталями и электродом, чтобы «удержать» дугу. При резких скачках реакции может и не хватить — при резком возрастании тока зачастую можно получить прожиг заготовок насквозь, особенно при сваривании тонкостенного металла.
К тому же к сварочным трансформаторам, не оборудованным выпрямителем, нужно приноровиться. Дело в том, что сварка переменным током более сложна физически. Она приводит к так называемой «жесткой» дуге, шипению электрода и разбрызгиванию металла по заготовке.
На рисунке: слева — шов, выполненный трансформаторным аппаратом, справа — инвертором.
Работать на трансформаторном сварочном аппарате несколько сложнее. Зато освоив технику сварки, без труда можно «творить чудеса» на инверторе. Обратный переход без привыкания, наработки навыка и определенного «доучивания» невозможен!
Всепогодность
По этому признаку — однозначный фаворит трансформаторный полуавтомат. Дело в том, что напичканные электроникой инверторы боятся влаги и пыли, которые способны вывести из строя плату аппарата.
Сварка в запыленных помещениях, особенно с содержащейся в воздухе металлизированной пылью, не для инвертора!
Еще одно ограничение, накладываемое производителями на инверторные аппараты — использование оборудования для работы в мороз. Виной тому — возможный конденсат, который может образоваться на платах устройства.
Трансформаторным аппаратам все вышеперечисленное нипочем. Они будут работать и в жару и в холод, и даже при повышенной влажности. Единственное чего не стоит делать, так это проводить сварочные работы под дождем! Это опасно!
Продолжительность включения
Как известно, этот параметр характеризует соотношение времени работы аппарата к необходимым для его остывания простоям при максимальных нагрузках. Чем интенсивнее сварочные работы, тем более продолжительные потребуются паузы.
При работе в нагруженных условиях, больше шансов побороться за симпатии потребителей у трансформаторных решений. Если нужно делать много сварных швов не самого лучшего качества, а то и вовсе, просто резать металл, то альтернативы трансформатору нет. Ведь делать то же самое на инверторном аппарате даже звучит кощунственно.
Работа в режиме повышенных нагрузок с большой долей вероятности приведет к выходу из строя электронных компонентов инверторного аппарата.
Сегодня при выборе сварочного полуавтомата большая часть пользователей наверняка отдаст предпочтение инверторному решению. И это не удивительно, ведь де-факто именно инверторные модели являются стандартом в области сварки.
Но сбрасывать со счетов трансформаторные модели все же преждевременно, поскольку для них еще есть определенные ниши, в которых им нет равных. В конце концов, все сводится к конкретным условиям работы и собственному взвешенному решению.
Постоянный ток против постоянного выходного напряжения
У меня дома есть небольшой сварочный аппарат MIG. Я хочу использовать его для сварки стержнем, но мне сказали, что я не могу. Почему это? На работе у нас есть несколько различных типов сварочных аппаратов. Почему некоторые машины можно использовать только для сварки стержнем, а некоторые только для сварки проволокой, а другие машины можно использовать и для того, и для другого? Я слышал термины CC и CV, но что они означают и почему они важны? Наконец, у нашей компании есть несколько переносных механизмов подачи проволоки с переключателем «CV/CC» внутри. Означает ли это, что их можно использовать с любым сварочным аппаратом?
Это очень хорошие вопросы, и я уверен, что многие сварщики задавали их. С точки зрения конструкции и управления дугой существует два принципиально разных типа источников сварочного тока. К ним относятся источники питания, которые производят постоянный ток (CC), и источники питания, которые производят постоянное напряжение (CV). Многопроцессорные источники питания — это те, которые содержат дополнительные схемы и компоненты, что позволяет им производить выход как CC, так и CV в зависимости от выбранного режима.
Обратите внимание, что сварочная дуга является динамической, при которой ток (А) и напряжение (В) постоянно изменяются. Источник питания контролирует дугу и вносит миллисекундные изменения для поддержания стабильного состояния дуги. Термин «постоянный» является относительным. Источник питания CC будет поддерживать ток на относительно постоянном уровне, независимо от довольно больших изменений напряжения, в то время как источник питания CV будет поддерживать напряжение на относительно постоянном уровне, независимо от довольно больших изменений тока.
Рисунок 1: Выходные характеристики для источников питания CC и CV
Следует также отметить, что в этой статье обсуждаются только традиционные типы источников сварочного тока. При импульсной сварке со многими новыми источниками питания с технологией управления формой волны вы действительно не можете считать выход строго CC или CV. Скорее, источники питания отслеживают и изменяют как напряжение, так и ток с чрезвычайно высокой скоростью (намного быстрее, чем источники питания с традиционной технологией), чтобы обеспечить очень стабильные условия дуговой сварки.
Прежде чем обсуждать вопрос о сравнении постоянного и постоянного тока, мы должны сначала понять влияние тока и напряжения на дуговую сварку. Ток влияет на скорость плавления или скорость расхода электрода, будь то стержневой электрод или проволочный электрод. Чем выше уровень тока, тем быстрее плавится электрод или выше скорость плавления, измеряемая в фунтах в час (lbs/hr) или килограммах в час (kg/hr). Чем ниже ток, тем ниже становится скорость плавления электрода. Напряжение определяет длину сварочной дуги, а также результирующую ширину и объем дугового конуса. По мере увеличения напряжения длина дуги увеличивается (и конус дуги шире), а по мере его уменьшения длина дуги становится короче (и конус дуги уже).
Рисунок 2: Влияние напряжения дуги
Теперь тип используемого сварочного процесса и связанный с ним уровень автоматизации определяют, какой тип сварки является наиболее стабильным и, следовательно, предпочтительным. Процесс дуговой сварки в защитном металле (SMAW) (также известный как MMAW или палка) и процесс дуговой сварки вольфрамовым электродом в среде защитного газа (GTAW) (также известный как TIG) обычно считаются ручными процессами. Это означает, что вы контролируете все параметры сварки вручную. Вы держите электрододержатель или горелку TIG в руке и вручную контролируете угол перемещения, рабочий угол, скорость перемещения, длину дуги и скорость подачи электрода в соединение. Для процессов SMAW и GTAW (то есть ручных процессов) CC является предпочтительным типом выходного сигнала от источника питания.
И наоборот, процесс дуговой сварки металлическим электродом в среде защитного газа (GMAW) (также известный как MIG) и процесс дуговой сварки с флюсовой проволокой (FCAW) (также известный как флюсовый сердечник) обычно считаются полуавтоматическими процессами. Это означает, что вы по-прежнему держите сварочную горелку в руке и вручную контролируете угол перемещения, рабочий угол, скорость перемещения и расстояние от наконечника до рабочего места (CTWD). Однако скорость подачи электрода в соединение (известная как скорость подачи проволоки (WFS)) регулируется автоматически с помощью механизма подачи проволоки с постоянной скоростью. Для процессов GMAW и FCAW (т. е. полуавтоматических процессов) CV является предпочтительным выходом.
Таблица 1 содержит сводку рекомендуемых типов выходного сигнала в зависимости от процесса сварки.
Таблица 1: Рекомендуемый тип выходной мощности источника питания в зависимости от процесса дуговой сварки
Чтобы использовать более простую конструкцию и снизить затраты на приобретение, источники сварочного тока обычно предназначены для использования только с одним или двумя типами сварочных процессов. Таким образом, базовая машина для сварки стержней будет иметь только выход CC, поскольку она предназначена только для сварки стержнем. Аппарат TIG также будет иметь только выход CC, так как он предназначен только для сварки TIG и сварки электродом. И наоборот, базовая машина MIG будет иметь выход только CV, поскольку она предназначена только для сварки MIG и сварки с флюсовой проволокой. Что касается вашего первого вопроса: «Почему я не могу сваривать электродами на своем аппарате MIG?», ответ заключается в том, что ваш аппарат MIG имеет только выход CV, который не предназначен и не рекомендуется для электродуговой сварки. И наоборот, обычно вы не можете выполнять сварку MIG с помощью стержневого аппарата с выходом CC, потому что это неправильный тип выхода для сварки MIG. Как упоминалось ранее, существуют многопроцессорные источники сварочного тока, которые могут выдавать выходную мощность как CC, так и CV. Однако они, как правило, более сложны, имеют более высокую производительность, предназначены для промышленного применения и не имеют цены на базовый диапазон стоимости сварочного аппарата начального уровня.
На рис. 3 показаны примеры типовых сварочных аппаратов CC, CV и многопроцессорных сварочных аппаратов.
Рисунок 3: Пример источников сварочного тока по типу выходного сигнала
Вы можете создать сварочную дугу с помощью любого из сварочных процессов с выходным типом CC или CV (если вы можете настроить сварочное оборудование для этого) . Однако, когда вы используете предпочтительный тип выхода для каждого соответствующего процесса, условия дуги очень стабильны. Однако, когда вы используете неправильный тип вывода для каждого соответствующего процесса, условия дуги могут быть очень нестабильными. В большинстве случаев они настолько нестабильны, что попытки сохранить дугу становятся невозможными.
Теперь давайте обсудим, почему эти последние утверждения верны. С двумя ручными процессами, SMAW и GTAW, вы управляете всеми переменными вручную (именно поэтому они являются двумя наиболее трудоемкими процессами, требующими навыков оператора). Вам нужно, чтобы электрод плавился с постоянной скоростью, чтобы вы могли подавать его в соединение с постоянной скоростью. Для этого мощность сварки должна поддерживать ток на постоянном уровне (т. е. CC), чтобы результирующая скорость расплавления была постоянной. Напряжение является менее контролируемой переменной. При ручных процессах очень сложно постоянно поддерживать одинаковую длину дуги, потому что вы также постоянно подаете электрод в соединение. Напряжение изменяется в результате изменения длины дуги. С выходом CC ток является вашей предустановкой, управляющая переменная и напряжение просто измеряются (обычно как среднее значение) во время сварки.
Если вы попытаетесь выполнить сварку с использованием процесса SMAW, например, используя выход CV, ток и результирующая скорость плавления будут сильно различаться. По мере того, как вы перемещались по стыку (пытаясь соответствовать всем другим параметрам сварки), электрод плавился с большей скоростью, затем с меньшей скоростью, затем с большей скоростью и т. д. Вам постоянно нужно было бы изменять скорость, с которой вы вставили электрод в сустав. Это невыполнимое условие, что делает вывод CV нежелательным.
Когда вы переключаетесь на полуавтоматический процесс, такой как GMAW или FCAW, что-то меняется. В то время как вы по-прежнему контролируете многие параметры сварки вручную, электрод подается в соединение с постоянной скоростью (в зависимости от конкретной WFS, которую вы установили на механизме подачи проволоки). Теперь вы хотите, чтобы длина дуги была постоянной. Для этого на выходе сварки необходимо поддерживать напряжение на постоянном уровне (т. е. CV), чтобы результирующая длина дуги была постоянной. Ток является менее контролирующей переменной. Он пропорционален или является результатом WFS. По мере увеличения WFS увеличивается ток и наоборот. С выходом CV напряжение и WFS являются вашими предустановками, управляющие переменные и ток просто измеряются во время сварки.
Если вы попытаетесь сварить процессами GMAW или FCAW с выходным сигналом CC, напряжение и результирующая длина дуги будут сильно различаться. По мере снижения напряжения длина дуги становилась бы очень короткой, и электрод упирался бы в пластину. Затем по мере увеличения напряжения длина дуги становилась бы очень большой, и электрод сгорал бы обратно к контактному наконечнику. Электрод будет постоянно втыкаться в пластину, затем прогорать обратно к кончику, затем втыкаться в пластину и т. д. Это невыполнимое условие, что делает вывод CC нежелательным.
В качестве примечания: широко распространена полная автоматизация процессов сварки GTAW, GMAW и FCAW. В случае полной автоматизации все переменные контролируются машиной и удерживаются на постоянном угле, расстоянии или скорости. Следовательно, меньше изменений в условиях дуги. Однако предпочтительным типом вывода для автоматизированной GTAW по-прежнему является CC, а для автоматизированной GMAW и FCAW по-прежнему CV. Пятый общий процесс дуговой сварки, дуговая сварка под флюсом (SAW) (также известная как субдуговая сварка), как правило, также является автоматизированным процессом. С SAW обычно используется выход CC или CV. Определяющими факторами в отношении того, какой тип выходного сигнала является наилучшим, обычно являются диаметр электрода, скорость перемещения и размер сварочной ванны. Для полуавтоматической SAW предпочтительным типом вывода является CV.
Ваш последний вопрос касался переносных механизмов подачи проволоки (см. пример на , рис. 4 ). Это оборудование, которое позволяет вам нарушать основные правила, описанные в этой статье… до некоторой степени. Они предназначены в первую очередь для сварки в полевых условиях и обладают тремя уникальными особенностями по сравнению с обычными механизмами подачи проволоки заводского типа. Во-первых, провод заключен в жесткий пластиковый корпус для лучшей защиты и долговечности в полевых условиях. Во-вторых, им не требуется кабель управления для питания приводного двигателя, а вместо этого используется провод датчика напряжения от механизма подачи проволоки. Таким образом, подключение простое, требуется только использование существующего сварочного кабеля источника питания (и добавление газового шланга). В-третьих, они могут работать с источником питания CC, но с ОГРАНИЧЕННЫМ успехом. У них есть тумблер «CC/CV», в котором вы выбираете тип выхода от источника питания.
Когда впервые появились эти портативные механизмы подачи проволоки, теория заключалась в том, что их можно использовать с большой существующей базой источников питания CC, уже находящихся в полевых условиях (в основном это сварочные аппараты с приводом от двигателя), и, таким образом, теперь они дают производителям GMAW и FCAW (т. проволочная сварка) возможность. Вместо того, чтобы покупать совершенно новый источник питания CV, им нужно было только приобрести механизм подачи проволоки. Чтобы компенсировать колебания напряжения, которые вы получаете с выходом CC, эти механизмы подачи проволоки имеют дополнительную схему, которая замедляет реакцию скорости подачи проволоки на изменения напряжения, пытаясь помочь стабилизировать дугу (обратите внимание, что на CC скорость подачи проволоки уже не постоянна, а постоянно увеличивается и уменьшается в попытке поддерживать ток на постоянном выходе).
Рис. 4: Пример устройства подачи проволоки портативного типа
Реальность сварки проволокой с выходом CC такова, что она работает довольно хорошо в одних приложениях и плохо в других. Относительно хорошая стабильность дуги достигается при использовании процесса с порошковой проволокой в среде защитного газа (FCAW-G) и процесса GMAW при переносе металла в режиме струйной дуги или импульсной струйной дуги. Тем не менее, стабильность дуги по-прежнему очень непостоянна и неприемлема для самозащитной порошковой проволоки (FCAW-S) и процесса GMAW в режиме переноса металла с коротким замыканием. Несмотря на то, что напряжение изменяется в зависимости от выходного сигнала CC, процессы, которые обычно работают при более высоких напряжениях (например, 24 В или более), такие как FCAW-G и струйная дуга или импульсная дуговая сварка MIG со струйной сваркой, менее чувствительны к изменениям напряжения, наблюдаемым с выходом CC. Поэтому стабильность дуги довольно хорошая. В то время как такие процессы, как MIG с коротким замыканием и FCAW-S, которые обычно работают при более низких настройках напряжения (например, 22 В или меньше), более чувствительны к изменениям напряжения. Поэтому стабильность дуги намного хуже и обычно считается неприемлемой. Еще один фактор, связанный с электродами FCAW-S на выходе CC, заключается в том, что чрезмерное напряжение дуги и, как следствие, большая длина дуги могут привести к чрезмерному воздействию атмосферы на дугу. Это потенциально может привести к пористости сварного шва и/или резкому снижению ударной вязкости металла шва при низких температурах.
В заключение, выход CV ВСЕГДА рекомендуется для сварки проволокой. Поэтому при использовании этих портативных механизмов подачи проволоки с источником питания, имеющим выход CV, используйте его вместо выхода CC. Наконец, хотя выход CC может быть приемлемым для общего назначения FCAW-G, сварки струйной дугой и импульсной струйной сварки MIG, он не рекомендуется для работы с кодовым качеством.
Электросварочный аппарат, без газа Полуавтоматический сварочный аппарат постоянного тока Arcury 80 Luna II | СТАРДЕНКИ
1. Артикул данного изделия, посмотреть и выбрать из списка можно здесь
Пропустить Далее >>
2. Или выберите спецификацию на вкладке конфигурации, пока не будет сгенерирован номер детали
Пропустить Далее >>
3. Информация о продукте доступна в этом разделе
Пропустить Закрыть
(!) Поскольку поддержка со стороны Microsoft прекратится 14 января 2020 года, пользователь Windows 7 может не иметь возможности эффективно использовать веб-сайт MISUMI. Пожалуйста, рассмотрите возможность обновления вашей системы в соответствии с «системными требованиями веб-сайта MISUMI».
- МИСУМИ Главная>
- Инструменты для обработки>
- Товары для сварки>
- Электросварочные аппараты>
- Электросварочный аппарат, негазовый полуавтоматический сварочный аппарат постоянного тока Arcury 80 Luna II
Очистить все
Номер детали |
---|
САЙ-80Л2 |
Номер детали | Наименование | Минимальное количество для заказа.![]() | Скидка за объем | Количество дней до отгрузки | |
---|---|---|---|---|---|
24 115,47 ฿ | СВАРОЧНАЯ МАШИНА SDH | 1 шт. | 25 дней |
Загрузка…
Основная информация
Автоматический сварочный аппарат | Частота | Комбинация 50/60 Гц | Масса (г) | 11000 | |
---|---|---|---|---|---|
Номинальное первичное напряжение | Однофазный 100 В | Номинальный вторичный ток | ДК40А~75А | Первичная входная мощность (кВА) | 2,5 |
Диаметр проволоки | Негазовая проволока 0,8φ | Класс изоляции | Н тип | Размер (мм) | 211Ш×330Д×235В |
Содержимое стандартного набора | Заземляющий зажим (кабель 2,0 м, включая корпус), фонарик (кабель 2,0 м, включая корпус), тонкая насадка / с наконечником, шнур питания (2,0 м, включая корпус) Адаптер 2P / 100 В, ручной блокатор света (фильтр и крышка входят в комплект ), отбойный молоток и проволочная щетка |
Пожалуйста, проверьте тип/размеры/спецификацию детали SAY-80L2 в электросварочном аппарате, бесгазовом полуавтоматическом сварочном аппарате постоянного тока серии Arcury 80 Luna II.
Добавить комментарий