Охлаждающая жидкость это жидкость: Охлаждающая жидкость | это… Что такое Охлаждающая жидкость?

Охлаждающая жидкость | это… Что такое Охлаждающая жидкость?

Охлаждающая жидкость состоит из воды, антифриза, специальных присадок (ингибиторов коррозии), предохраняющих систему охлаждения двигателя внутреннего сгорания от коррозионных процессов и саму жидкость от термохимического разрушения, и смазывающих материалов для помпы. Антифризом называется соединение, при смешивании которого с водой понижается температура замерзания смеси. Антифризами являются практически все водные растворы неорганических солей (хлористый натрий, калий, кальций), анилин, спирты, глицерин, гликоли, целлозольвы, карбитолы и др.

В настоящее время применяются в основном охлаждающие жидкости на основе этиленгликоля. Этиленгликоль разбавляют водой в следующих пропорциях (этиленгликоль:вода) 1:1, 2:3, либо 1:2. Пропиленгликолевые антифризы менее токсичны, но их производство обходится дороже, и они имеют меньшую температуру кипения. Все этиленгликолевые ОЖ по качеству отличаются друг от друга только набором (или отсутствием) необходимых присадок и степенью разбавления водой. Охлаждающие жидкости на основе гликоля очень ядовиты при приёме внутрь. Поскольку они сладкие на вкус, наиболее подвержены риску отравления дети и домашние питомцы. В США, например, на территории нескольких штатов обязали производителей добавлять в антифриз горькие вкусовые добавки. При отравлении гликолевый антифриз воздействует на центральную нервную систему, вызывая потерю координации, слабость, рвоту. Одним из лучших антифризов является 40° этиловый спирт, распространения которого в таком качестве не произошло из-за его специфического эффекта.

Тосол

«Тоcол» — торговое обозначение незамерзающей охлаждающей жидкости, разработанной в СССР, хотя в настоящее время «Тосолом» часто называют любую охлаждающую жидкость. В качестве антифриза в Тосоле используется этиленгликоль. ТОСОЛ предназначен для охлаждения двигателей автомобилей в любое время года в рамках температур, указанных в марках. Числа 40 и 65, стоящие в марках Тосола, означают начало температуры замерзания марки. Самая низкая температура замерзания системы этиленгликоль-вода составляет около −70 °C.

Внешне стандартный ТОСОЛ-40 представляет собой жидкость голубого цвета, ТОСОЛ-65 — красный. Цвет необходим для определения чёткого уровня ОЖ в расширительном бачке, чтобы не путать разные марки, а также чтобы отличать подтёки охлаждающей жидкости от подтёков других эксплуатационных жидкостей, изменение цвета охлаждающей жидкости в процессе эксплуатации сигнализирует о потере эксплуатационных свойств ОЖ и необходимой её замене. Бесцветная жидкость (а без добавления красителя гликолевый антифриз бесцветен) будет работать не хуже окрашенных ОЖ.

Разработчиками рецептуры «Тосола» были Алексей Васильевич Борисов и Оскар Наумович Дымент. Разработчиками технологии получения и организацией его производства — Чижов Евгений Борисович и Шаталов Марк Петрович. Авторами торгового названия Кирьян Борис Владимирович и Чижов Евгений Борисович.[источник не указан 666 дней] Коррозионные испытания проводил Тихонов Юрий Владимирович.

Слово «ТОСОЛ» образовано из аббревиатуры «ТОС» — «Технология органического синтеза», отдела НИИ органической химии и технологии, где работали создатели, и окончания «-ол», применяемого для обозначения спиртов (этиленгликоль — это двухосновный спирт). Для примера: «этанол» — этиловый спирт, «этан-1,2-диол» — этиленгликоль. По другой версии, “ОЛ” – сокращение Отдельной Лаборатории, разработавшей вещество.

Основные национальные стандарты на охлаждающие жидкости

  • ГОСТ 28084-89 (Российская Федерация)
  • BS 6580: 1992 (Великобритания)
  • SAE J 1034 (США)
  • ASTM D 3306 (США)
  • ONORM V5123 (Австрия)
  • AFNOR NF R15-601 (Франция)
  • CUNA NC956 16 (Италия)
  • JIS K2234 (Япония)

Примечания

Все об охлаждающей жидкости – статья автотехцентра Ойл Сервис

На территории постсоветского пространства существует зачастую искаженное представление об автомобильных охлаждающих жидкостях. Этому способствует отставание нашего автопрома от мировых производителей, отсутствие специальной литературы и просто квалифицированных специалистов. Вследствие этого, наши представления об охлаждающих жидкостях «обросли» всевозможными слухами, которые зачастую, далеки от истины. Эти слухи передаются на уровне рядовых автомобилистов, продавцов в автомагазинах, и не квалифицированных работников автосервисов. В этой статье мы ответим на все основные вопросы, касающиеся охлаждающих жидкостей.

Из чего производят антифриз?

Современные антифризы – это водные растворы многоатомных спиртов (этиленгликоля или пропиленгликоля), замерзающие при низкой температуре. Чистый этиленгликоль – это маслянистая, вязкая жидкость, не обладающая цветом, но имеющая слабый характерный запах. Температура кипения 197° С, температура замерзания -13° С. Плотность чистого этиленгликоля – 1114 кг/м3 (при 20° С) и, к тому же, он является сильнейшим пищевым ядом. Водные растворы с концентрацией этиленгликоля от 30% до 70% имеют более низкую температуру замерзания. Минимальная температура замерзания достигается при соотношении воды и этиленгликоля 1 : 2 и составляет -70° С. Количество этиленгликоля в ОЖ обычно составляет 52% – 64%, при этом температура замерзания полученных растворов составляет от -32° С  до -70° С.

Антифризы на основе пропиленгликоля так же проявили отличные эксплуатационные характеристики. Экологически, пропиленгликоль не так вреден. Использование таких антифризов оправдано и в экстремальных условиях – они эффективнее охлаждают двигатель за счет ускоренной теплоотдачи, так как пропиленгликоль имеет более низкую температуру испарения. Эти жидкости обладают немного большей вязкостью по сравнению с жидкостями на основе этиленгликоля, но на работе системы охлаждения двигателя это не отражается. Проведенные испытания свидетельствуют, что циркуляция охлаждающей жидкости на основе пропиленгликоля и жидкости на основе этиленгликоля в системе охлаждения ничем не отличается. При равной концентрации, охлаждающая жидкость на основе этиленгликоля замерзает при более низкой температуре, чем жидкость на основе пропиленгликоля, однако, разница температур весьма незначительна.

Тосол и антифриз – одно и то же или нет?

Тосол – одна из марок охлаждающих жидкостей (ОЖ). Его название – это аббревиатура названия отдела «Технология органического синтеза» (ТОС), где он был разработан, и окончания «ол», обозначающего в химии принадлежность к группе спиртов. Тосолами, обычно называют отечественные охлаждающие жидкости, под них был разработан государственный стандарт, последняя версия которого относится к 1989 году. ГОСТ 28084-89 «Жидкости охлаждающие низко замерзающие». Кстати, на титульном листе Технических Условий ТУ 6-56-95-96 написано «Антифриз Тосол АМ». Таким образом, принципиальной разницы между Антифризом и Тосолом не существует.

Термин «антифриз» происходит от английского слова «Antifreeze», которое переводится как «препятствующий замерзанию». Во всем мире, обычно, пользуются термином «Antifreeze Coolant», буквальный перевод: «антифриз – охлаждающая жидкость». Итак, мы выяснили – разницы принципиальной между тосолом и антифризом нет.

Но она существует в составе пакета присадок, эксплуатационных характеристиках, области применимости (для каких автомобилей или двигателей), сроке эксплуатации и соответственно – качестве. Каждый из антифризов имеет свое название, например: Castrol Antifreeze NF, GlasELF, GlycoShell, Havoline, Glysantine, и так далее. Тосол – это название российского антифриза. Что же приобретать – решайте сами. Но, из-за российского или отечественногоого происхождения тосола, многие автолюбители предпочитают не заливать его в свои двигатели. Как правило, это оправдано. Приобретая тосол, вероятность купить подделку или просто некачественную жидкость значительно выше.

ГОСТ 28084-89

ГОСТ 28084-89 написан еще для советских охлаждающих жидкостей, пакет присадок которых содержит неорганические ингибиторы – фосфаты, бораты, силикаты, амины, нитриты… Утверждение, что если жидкость соответствует ГОСТу, то она качественная и может применяться во всех автомобилях не верно. Известны случаи, когда отечественные охлаждающие жидкости, соответствующие ГОСТу, оказывались совершенно непригодными для современных двигателей.

В то же время, образцы европейских антифризов этому ГОСТу, как правило, не соответствуют. Вывод – соответствие советскому, но еще действующему ГОСТу, не является критерием качества ОЖ. Единственным критерием применимости является наличие допуска/одобрения от авто производителя на использование данного антифриза в данном автомобиле. Эти допуски, как правило, указаны в сервисной книге Вашего автомобиля.

Цвет антифриза

Среди автомобилистов ходит неверное представление о том, что цвет антифриза связан с его качеством. Эти домыслы звучат примерно так:

  • Красный или желтый антифризы лучше, они служат дольше (имеют G12 класс).
  • Зеленый, синий антифриз, в том числе Тосол – чуть хуже, служат меньше (имеют G11 класс).
  • Все антифризы одного цвета одинаковые и их можно смешивать между собой.

На самом деле все не совсем так, и не все антифризы одного цвета можно смешивать. Изначально ОЖ бесцветны. Производители добавляют в их состав краситель лишь для придания «индивидуальности» и для отличия от других жидкостей. Количество самого красителя минимально и никакого отношения к свойствам антифриза не имеет. Обычно, цвет антифриза является предметом договоренности между производителями или простой прихотью автозавода. Таким образом, правильно будет считать, что антифризы смешивать нельзя.

Об антифризах G11 и G12

Международного стандарта «G11», «G12» или «G12+» не существует. Первоисточником для такого обозначения послужили широко известные марки антифризов «VW coolant G11» и «VW coolant G12», которые выпускаются в Германии для автоконцерна Volkswagen, AUDI, Skoda. Кроме того, спецификации Volkswagen TL 774-C на «гибридные» и TL 774-D на «карбоксилатные» охлаждающие жидкости иногда записывают как TL 774-C(G11) и TL 774-D(G12). В любом случае, символика «G11» и «G12» связана с компанией Volkswagen. В 2006 году автоконцерн Volkswagen изменил свои спецификации на охлаждающие жидкости. Позиция TL 774-D(G12) была исключена вовсе. В спецификациях сохранилась позиция TL 774-F(G12+) и добавились две новые: TL 774-G(G12++) и TL 774-H(G12+++).

Смазывающие свойства

Иногда можно услышать предположения, что и в антифризы и в Тосол добавляют специальные присадки для придания им смазывающих свойств. Это вымысел. Никаких специальных «смазывающих» присадок в охлаждающих жидкостях не существует. Смазывающие свойства обеспечиваются базовым компонентом антифризов – этиленгликолем или пропиленгликолем.

Вспениваемость антифриза

Показатель «вспениваемость» включен в ГОСТ 28084-89 и его норматив 30 куб. см. является гораздо более «жестким», чем у других. А в международном стандарте ASTM D3306/4340/4656 и ASTM D4985/5345 этот норматив составляет 150 куб. см. Ошибочно считается, что охлаждающая жидкость должна обладать «антипенными» свойствами, чтобы не пениться в радиаторе автомобиля.
На самом деле норматив на «вспениваемость» связан не с автомобилями, а с автозаводами. Пена может быть помехой на автосборочном конвейере при заправке охлаждающей жидкости в двигатели автомобилей, или при скоростной разливке антифризов в канистры во время производства.

«Резерв щелочности»

«Резерв щелочности» не является показателем количества и качества присадок в охлаждающей жидкости. Понятие «резерв щелочности» имеет смысл только для традиционных охлаждающих жидкостей, содержащих в качестве ингибиторов фосфаты или бораты. К таким жидкостям относится Тосол, для которого, в принципе, и был написан ГОСТ 28084-89, в котором «резерв щелочности» составляет не менее 10 единиц. Современные карбоксилатные охлаждающие жидкости не имеют в своем составе ни фосфатов, ни боратов, поэтому их «резерв щелочности» может быть любым, в том числе и нулевым.

Многие производители автомобилей исключили показатель «резерв щелочности» из своих спецификаций на охлаждающие жидкости, например Ford WSS-M97B44-D, Komatsu KES 07.892. Другие, например Hyundai-KIA MS 591-08, RENAULT 41-01-001/-S Type D, оставили «резерв щелочности» как формальный показатель для охлаждающей жидкости.

Смачиваемость антифриза

Говоря о смачиваемости антифризов, полезно знать вот что, смачивающие свойства любой жидкости, которые связаны с ее коэффициентом поверхностного натяжения, определяют способность жидкости просачиваться через узкие каналы и трещины.

Известно, что бензин, имеющий низкий коэффициент поверхностного натяжения, отлично просачивается через мелкие трещины. Поэтому его используют для поиска мелких дырочек и трещин, невидимых простым глазом.

Все антифризы, равно как и смесь этиленгликоля и воды, также имеют низкий коэффициент поверхностного натяжения, почти в два раза меньше, чем у воды. Капли антифриза, выпадающие из одной и той же пипетки, будут в два раза меньше, чем капли воды. Этим объясняется достаточно неприятная способность антифриза просачиваться из-под плохо затянутых хомутов. Антифриз просачиваться там, где обычная вода этого не сможет.

Сейчас мы коротко ответим на вопросы, которые чаще всего задают автолюбители:

  • Где купить качественный антифриз?
  • Какой срок эксплуатации охлаждающей жидкости?
  • Какие жидкости заливать в систему охлаждения того или иного двигателя?
  • Что доливать, при необходимости, в систему охлаждения, важен ли цвет заливаемого антифриза, и можно ли их смешивать?
  • Насколько важна температура замерзания и закипания ОЖ?

Рекомендации для покупки качественных и оригинальных жидкостей остаются те же: антифриз необходимо приобретать только у официального представителя того или иного бренда или в специализированных магазинах, либо на СТО, которые работают с официальными представителями торговых марок. В этом случае есть гарантия, что, Вы убережете свой автомобиль от подделок.

Как правило, срок эксплуатации охлаждающей жидкости и ее тип указан в сервисной книге автомобиля, либо на официальном сайте авто производителя. Также эту информацию можно получить на гарантийной СТО. Основываясь на нашу практику, замену охлаждающей жидкости необходимо производить раз в 2-3 года или через каждые 80 – 100 тыс. км.
При необходимости доливайте в систему охлаждения тот же антифриз, который был залит ранее.

Если, Вы не знаете тип ОЖ, залитой в систему охлаждения, то долейте дистиллированной воды, предварительно проверив плотность жидкости ареометром. Идеальный вариант – замена охлаждающей жидкости, с последующей записью в сервисной книге и указанием типа антифриза и срока его замены. На вопрос «можно ли смешивать антифризы по цветам и типам?». Наш ответ – скорее нет, чем да. Впрочем, согласно отзывам многих автовладельцев, смешивать антифризы разного цвета и типа можно, но результаты такого смешивания точно никто не предскажет.

Температуры замерзания и закипания взаимосвязаны (см. рисунок) и зависят от плотности и марки антифриза. Более того, одна из самых важных характеристик охлаждающей жидкости – температура кипения. Чем выше температура закипания антифриза, тем эффективнее теплоотвод.

При эксплуатации автомобиля, охлаждающая жидкость теряет свои свойства: уменьшается теплопередача, падают смазывающие свойства, понижается температура кипения антифриза, а не защищенные металлы интенсивно коррозируют. Помните: Своевременная замена антифриза очень важна для долгосрочной эксплуатации двигателя Вашего автомобиля.

Что такое охлаждающая жидкость?

Что такое охлаждающая жидкость? Охлаждающая жидкость (также называемая антифризом) — это специальная жидкость, которая циркулирует в вашем двигателе, поддерживая его в правильном диапазоне рабочих температур. Он сделан из этиленгликоля или пропилена и обычно имеет зеленый, синий или даже розовый цвет.

Как работает охлаждающая жидкость?
Двигатель вашего автомобиля во время работы выделяет много тепла, и его необходимо постоянно охлаждать, чтобы избежать повреждения двигателя. Система охлаждения в вашем автомобиле работает, направляя охлаждающую жидкость через каналы в блоке цилиндров и головках. Проходя через эти каналы, охлаждающая жидкость забирает тепло от двигателя. Затем нагретая жидкость проходит через резиновый шланг к радиатору в передней части автомобиля. Протекая по тонким трубкам в радиаторе, горячая жидкость охлаждается потоком воздуха, поступающим в моторный отсек через решетку перед автомобилем. После охлаждения жидкость возвращается в двигатель, чтобы поглотить больше тепла. водяной насос поддерживает движение жидкости через эту систему водопровода и скрытых проходов.

Почему охлаждающая жидкость важна Без охлаждающей жидкости тепло, выделяемое постоянным внутренним сгоранием, очень быстро разрушило бы двигатель. Одной воды недостаточно для охлаждения системы, так как высокие температуры внутри двигателя в конечном итоге закипят и полностью испарят его. Точно так же в очень холодную погоду вода замерзает, когда автомобиль стоит на холостом ходу, что делает систему охлаждения бесполезной. Поэтому охлаждающая жидкость важна, так как синергия между гликолями и водой позволяет ей работать в холодных и жарких условиях круглый год. Дополнительные присадки, присутствующие в охлаждающей жидкости, также обеспечивают защиту от коррозии.

Как и в случае со смазочными материалами, охлаждающую жидкость в системе охлаждения вашего автомобиля необходимо регулярно проверять, чтобы убедиться, что ее достаточно. Наш антифриз и охлаждающая жидкость для двигателя помогают защитить ваш двигатель от серьезных повреждений.

Поскольку не все охлаждающие жидкости можно смешивать, обратитесь к руководству по эксплуатации, чтобы узнать, какая охлаждающая жидкость подходит для вашего автомобиля и как ее следует применять.

Антифриз Rymax и охлаждающая жидкость для двигателяНаши антифриз и охлаждающая жидкость для двигателя помогают защитить ваш двигатель от тяжелых и серьезных повреждений.

Dione BАнтифриз и охлаждающая жидкость двигателя

  • Обеспечивает высокую степень защиты от коррозии для всех систем охлаждения двигателя, независимо от того, выполнены ли они преимущественно из алюминия или железа.
  • Dione BS – это продукт на основе моноэтиленгликоля, который был специально разработан, чтобы быть по-настоящему универсальным в своем применении.
  • Готовый к использованию (-36ºC) и концентрат

Dione G12+

  • Превосходная стабильность в жесткой воде и очень низкая скорость истощения ингибитора.
  • Поставляется в виде готового к использованию (-36ºC) концентрата.

    Распространенные типы охлаждающих жидкостей и их использование в системах жидкостного охлаждения

    Введение

    Использование жидкостей для теплопередачи является важным методом охлаждения во многих отраслях промышленности. При выборе наилучшего теплоносителя для системы охлаждения необходимо учитывать факторы производительности, совместимости и технического обслуживания. Вода обладает отличными свойствами теплопередачи, что делает ее своего рода стандартом по сравнению с другими охлаждающими жидкостями. Среди теплоносителей вода обладает превосходными свойствами во многих отношениях, с высокой удельной теплоемкостью около 4200 Дж/кгK, низкой вязкостью и отсутствием температуры вспышки. С другой стороны, он имеет относительно узкий диапазон работы, так как температура жидкости делает простую воду восприимчивой к замерзанию или кипению.

    Чистота воды

    Качество уличной (водопроводной) воды зависит от ее хранения, доставки и конечного источника (подземные или поверхностные воды). Он может содержать коррозионно-активные примеси, такие как хлориды, соли щелочных карбонатов или взвешенные твердые частицы. Для систем охлаждения с рециркуляционным потоком воды систему можно заправлять уже отфильтрованной или очищенной водой. В то время как некоторых примесей следует избегать из-за потенциального коррозионного воздействия, совершенно чистая вода требует ионов и считается агрессивным растворителем. Грязная вода также является электролитическим мостиком, вызывающим гальваническую коррозию, если в системе присутствуют разнородные металлы.

    Вода в качестве хладагента в рециркуляционной системе также подвержена биологическому загрязнению. Водоросли, бактерии или грибки могут образовываться в зависимости от воздействия на систему света и тепла и наличия питательных веществ во влажных компонентах. Образовавшаяся слизь или биопленка могут препятствовать теплопередаче между жидкостью и смачиваемыми поверхностями. Следует учитывать достаточную концентрацию присадки. Например, гликоль в качестве добавки обычно используется для контроля биологического роста, но при концентрациях менее 20% эффективность ограничена; фактически, ниже 1% пропиленгликоль и этиленгликоль действуют как бактериальное питательное вещество.
     
    Существует несколько сложных и взаимосвязанных факторов при выборе различных типов воды и воды/смесей, а также некоторые конструктивные требования, обуславливающие потребность в других теплоносителях. Рассмотрим сравнение пропиленгликоля (PG) с этиленгликолем (EG). Пропиленгликоль гораздо менее токсичен, чем этиленгликоль, поэтому с ним легче обращаться и утилизировать, чем с этиленгликолем. Он также имеет более высокую удельную теплоемкость, чем этиленгликоль. Однако его теплопроводность ниже, а вязкость выше, чем у этиленгликоля, что приводит к лучшим общим характеристикам ЭГ по сравнению с ПГ. В большинстве случаев используется смесь гликоля и воды с более низкой концентрацией гликоля из-за превосходных характеристик воды по сравнению с любым типом гликоля. EG требует более низких концентраций, чем PG, для эквивалентного снижения точки замерзания, повышения точки кипения и снижения температуры взрыва.

    Совместимость при рабочих температурах

    Пригодность жидкости для работы в диапазоне рабочих температур имеет первостепенное значение. Это должно включать рассмотрение фазовых переходов жидкости (кипение и замерзание), химическое разрушение химического состава жидкости и снижение смазывающих и теплопередающих свойств жидкости. Замерзание жидкости уменьшит теплопередачу на поверхности, а кипение опасно для систем, не предназначенных для выдерживания избыточного давления в защитной оболочке жидкости. Взрыв расширяющихся паров кипящей жидкости (BLEVE) является потенциально опасным явлением, которое может произойти при внезапном разрыве защитной оболочки, даже если расчетные условия эксплуатации по температуре и давлению должны удерживать жидкость в жидком состоянии. Следует также отметить точки воспламенения летучих жидкостей.

    Большинство жидкостей можно оценить на температурную совместимость с помощью готовых печатных спецификаций, а также с другими материалами, необходимыми для определения ситуаций, связанных с различным давлением или необычными условиями эксплуатации. В тех случаях, когда конкретная комбинация жидкостей разрабатывается пользователем для использования, например, комбинации вода/гликоль, пользователю обычно требуется небольшая непосредственная работа по тестированию, учитывая доступность данных от производителей.

    Совместимость материалов

    Нержавеющая сталь и, в частности, нержавеющая сталь серии 300 (аустенитная нержавеющая сталь) инертны почти ко всем жидкостям-теплоносителям из-за природы пассивирующего слоя оксида хрома (III), покрывающего поверхности таких сталей. При использовании деионизированной воды нержавеющая сталь и никель считаются подходящими для смачиваемых поверхностей. Хотя нержавеющая сталь в большинстве случаев отлично подходит для защиты от коррозии, ее использование имеет недостаток в виде довольно низкой теплопроводности по сравнению с другими металлами, такими как алюминий или медь.

    Алюминий и его сплавы имеют хорошую теплопроводность в диапазоне 160-210 Вт/мК. Однако алюминий склонен к коррозии или точечной коррозии из-за примесей в неочищенной воде. Даже с раствором гликоля в дистиллированной воде как EG, так и PG при окислении образуют кислые соединения. Это может вызвать коррозию смачиваемых поверхностей и образование побочных продуктов органических кислот. Методы предотвращения включают добавление в жидкость ингибиторов коррозии или обработку смачиваемых поверхностей, например, анодирование алюминия.

    Медь и медно-никелевые сплавы обладают хорошей коррозионной стойкостью и естественной устойчивостью к биологическому росту. Как и в случае с алюминием, следует использовать ингибиторы коррозии, чтобы избежать кислотной коррозии.

    Смачиваемые поверхности насоса, включая уплотнения, должны быть совместимы как с перекачиваемой жидкостью, так и с ожидаемыми условиями эксплуатации. Гальваническая коррозия в системах, использующих различные смачиваемые металлы, может создать дополнительные проблемы.

    Диэлектрические свойства

    Охлаждение мощных трансформаторов предъявляет особые требования к электропроводности охлаждающих жидкостей, которые не могут способствовать возникновению дуги от высокого напряжения к земле или другим поверхностям. Аналогичные требования к низкой электропроводности жидкости обусловлены напряжениями в десятки киловольт в таких приложениях, как охлаждение рентгеновских трубок. Прямое иммерсионное охлаждение электроники для повышения производительности или строгого контроля температуры в целях тестирования, очевидно, требует низкой электропроводности. Для этих целей используются диэлектрические жидкости, такие как XG Galden или Fluorinert, с диэлектрической прочностью в десятки киловольт на 1/10 дюйма. Можно использовать воду высокой степени очистки, хотя начальное удельное сопротивление воды может меняться со временем без постоянного обслуживания. Минеральные масла или углеводороды, такие как гексан или гептан, могут использоваться, но могут возникнуть проблемы с воспламеняемостью.

    Эти органические жидкости часто имеют более высокую вязкость, чем вода, поэтому полезно получить данные от поставщика о характеристиках расхода и давления насоса-кандидата при работе с требуемой вязкостью жидкости.

    Жидкость с низкой электропроводностью может накапливать статический заряд в результате электризации потока. Удельное сопротивление 2×1011 Ом·см или более (50 пСм/м или менее) считается восприимчивым к этому эффекту. Для сравнения, деионизированная вода имеет более низкое удельное сопротивление. Чтобы избежать накопления статического электричества, необходим заземленный шланг или металлический трубопровод. В антистатическом шланге могут использоваться проводящие добавки к полимерному материалу, или он может иметь провод, намотанный через трубу, с заземляющими соединениями через соответствующие интервалы.

    Деионизированная вода

    Деионизированная вода имеет очень низкий уровень содержания минеральных ионов, что способствует повышению электропроводности воды. Производство деионизированной воды высшей степени чистоты предполагает использование смешанного слоя ионообменных смол для удаления из воды минеральных катионов и анионов и замены их ионами водорода и гидроксида.

    Даже при соблюдении мер предосторожности, обеспечивающих пассивирование смачиваемых поверхностей через контур охлаждающей жидкости, со временем в воде будут образовываться ионные примеси. Природа воды состоит в том, чтобы поглощать ионы из минералов, с которыми она контактирует, а деионизированная вода с недостаточным содержанием ионов жаждет их и агрессивно усваивает их с контактных поверхностей.

    Чтобы сохранить первоначальные диэлектрические свойства воды, ее необходимо постоянно пропускать через слои смолы. Эти грядки будут постепенно терять свою эффективность, и придется проводить регенерацию грядки, если ее не нужно периодически заменять. Для регенерации смешанных слоев требуются сложные системы, а также различные регенерирующие агенты для анионных и катионных смол. Масла, ил или металлические частицы (либо в результате механической обработки, либо в результате химического воздействия, такого как загрязнение железом) также уменьшают срок службы слоя смолы.

    Производительность

    Существует ряд различных теплофизических свойств, которые можно использовать для оценки тепловых характеристик жидкости, включая теплопроводность, удельную теплоемкость, плотность и вязкость. Конечной целью максимизации этих свойств является улучшение теплопередачи между жидкостью и теплообменными поверхностями, с которыми она контактирует. Непосредственная оценка коэффициента теплоотдачи в этих случаях требует использования соотношений, разработанных для расчета коэффициента для различных конкретных геометрических условий.

    В этих соотношениях два безразмерных параметра имеют зависимость от свойств жидкости. Число Рэлея связано с потоком, управляемым плавучестью, также известным как свободная конвекция или естественная конвекция. Число Прандтля представляет собой отношение коэффициента диффузии импульса к коэффициенту температуропроводности. Они определяются следующими уравнениями:

    Число Рэлея (например, для конвекции с вертикальной стенкой)

    Число Прандтля

    Корреляции теплопередачи имеют вид:

    Значение C представляет собой эмпирически определенную корреляцию, при которой число Рэлея занимает положение в положительном числителе корреляции, а число Прандтля имеет тенденцию занимать обратную позицию в знаменателе; таким образом, оба имеют положительный вклад в теплопередачу. Однако теплопроводность занимает в числителе позицию с прямой положительной зависимостью первого порядка от коэффициента теплопередачи. Определение положительного или отрицательного воздействия использования конкретной жидкости в приложении может быть громоздким, поскольку речь идет о нескольких типах и ориентациях конвекционных поверхностей теплопередачи.

    За исключением полного термического анализа, менее строгий подход, включающий показатель качества, такой как число Муромцева, может дать более простую основу для сравнения жидкостей, принимая во внимание некоторые или все ранее упомянутые физические свойства.

    Число Муромцева состоит из:

    Значения a, b, d и e представляют собой положительные значения, характерные для типа приложения.

    В общем, из числа Муромстеффа, а также из полного анализа различных корреляций для коэффициентов конвективной теплопередачи между жидкостью и твердыми поверхностями видно, что теплопроводность, плотность и удельная теплоемкость положительно влияют на производительность. теплоносителя, а вязкость вносит отрицательный вклад.

    К отрицательному влиянию более высокой вязкости на теплопередачу добавляется влияние на производительность насоса жидкостей различной вязкости, поскольку скорость жидкости оказывает значительное положительное влияние на коэффициент теплопередачи. Насосы также снабжены диаграммами зависимости расхода от давления, чтобы показать ожидаемую производительность с различными типами жидкостей и смесями, которые могут вызвать отклонение от предоставленных кривых. Работа при различных температурах также повлияет на вязкость жидкости, что окажет дополнительное влияние на скорость потока. Скорость жидкости или скорость потока важны для понимания ожидаемой производительности системы. Теплообменники и охлаждающие пластины часто рассчитаны на определенный расход жидкости определенного типа. Отклонение от жидкости, используемой для построения графиков прогнозируемых результатов, приведет к изменению цифр.

    Конечно, объемный расход жидкости должен быть достаточным для удовлетворения требований по отводу тепла, как ожидается, исходя из удельной теплоемкости жидкости и допустимого повышения температуры:

    Согласно часто используемому уравнению Дарси-Вейсбаха,

    с корреляции для коэффициента трения fD, доступные для различных условий потока и поверхностей труб и шлангов. Коэффициент трения обычно принимает форму, зависящую от числа Рейнольдса, так что вязкость жидкости имеет положительную связь с коэффициентом трения. Если предполагается, что система будет работать с насосом, пропускная способность которого чувствительна к противодавлению в системе, вязкость предполагаемой жидкости может иметь важное значение.

    Вопросы стоимости

    Водопроводная вода, очевидно, является самым дешевым вариантом, а очищенная охлаждающая вода будет стоить дороже в зависимости от типа чистоты и требуемого уровня.

    Затраты на техническое обслуживание, связанное с охлаждающей жидкостью определенного типа, стоит отметить. Это может включать фильтрацию, ионизационные слои, катодную защиту и доливку испарившейся или вытекшей жидкости. Утилизация является еще одним фактором: водопроводную или очищенную воду обычно можно утилизировать в обычный дренаж, но вода, смешанная со спиртами или другими органическими веществами, и вообще любые органические жидкости обычно требуют других методов. Расходы на утилизацию растворов охлаждающей жидкости, которые требуют периодической промывки и дозаправки в течение срока службы, а также растворов, с которыми необходимо обращаться в конце срока службы системы, могут превышать первоначальную стоимость охлаждающей жидкости.

    Со временем в несовершенно закрытой системе (протечки в швах или уплотнениях) можно ожидать снижения уровня жидкости. Добавление смеси воды/хладагента для доведения уровня жидкости до уровня должно включать специально контролируемые концентрации охлаждающей жидкости, соответствующие существующей жидкости системы. Однако со временем гликоли могут распадаться на органические кислоты — измерение pH жидкости в системе и проверка на наличие твердых и биологических загрязнений могут указывать на то, что требуется замена раствора охлаждающей жидкости.

    Жидкость Теплопроводность (Вт/мК)

    Удельная теплоемкость
    (Дж/кгK)

    Вязкость
    (сП)

    Плотность
    (кг/м 3 )


    Стоимость
    Температура кипения
    (°С)
    Температура замерзания
    (°C)
    Вода 0,58 4181 1,00 1000 $ 100 0
    50-50 вода/этиленгликоль 0,402 3283 2,51 1082 $$ 107 -37
    50-50 Вода/пропиленгликоль 0,357 3559 5,20 1041 $$ 106 -45
    Динален HC-30 0,519 3100 3,70 1275 $$$ 112 -40
    Галден HT200 0,065 963 4,30 1790 $$$ 200 -85*
    Флуоринерт FC-72 0,057 1100 0,64 1680 $$$ 56 -90*

    Заключение

    Существует множество типов охлаждающих жидкостей, соответствующих требованиям применения.