Механические накопители энергии – Аккумуляторы энергии на основе различных ее видов
Механические накопители энергии
Замечание 1
Накопителем энергии можно назвать систему, которая дает возможность аккумулирования энергии какого-либо вида за время заряда, и передачи этой энергии спустя время ее потребителю за период разряда для совершения полезной работы.
Аккумуляторы энергии бывают:
- электрическими,
- тепловыми,
- механическими.
Изобрел прибор для накопления механической энергии Армстронг. Его прибор был основан на поднимании на высоту груза или на воздухе под высоким давлением.
Основными направлениями применения накопителей энергии считают:
- аккумулирование лишней на какой-то момент времени энергии и использование ее при необходимости;
- трансформирования одного вида энергии в другую, преобразование характеристик энергии.
Механическая энергия – это энергия перемещения (поступательного движения и вращения) и энергия взаимодействия тел или их частей, то есть кинетическая и потенциальная энергия.
Для механических накопителей (как и любого другого вида накопителей энергии) характерными режимами работы стали:
- накопление энергии (заряд),
- отдача энергии (разряд),
- хранение энергии – промежуточный режим.
В режиме заряда к механическому накопителю подводится механическая энергия от внешнего источника. Конкретный тип реализации источника определен типом механического накопителя.
В состоянии разряда большая часть запасенной энергии отдается накопителем потребителю. Небольшая доля накопленной энергии теряется в режиме хранения и имеются потери в режиме разряда.
Разнообразие механических накопителей энергии
Механические накопители энергии применяются с древних времен. Их несомненными плюсами являются:
- конструктивная простота;
- неограниченный срок хранения запасенной энергии;
- большая надежность;
- исключительно длительный срок эксплуатации.
Основным недостатком механических накопителей считают малую удельную плотность запасаемой ими энергии.
Выделим следующие группы механических аккумуляторов энергии:
- Гравитационные механические накопители.
- Кинетические механические накопители
- Накопители, использующие силы упругости.
Механические накопители можно разделить на:
- статические,
- динамические,
- комбинированные.
Статические накопители механической энергии аккумулируют энергию:
- при упругом изменении формы (объема) рабочего тела;
- при его движении против сил тяжести в поле гравитации.
Рабочее тело данных накопителей статично в режиме хранения, в состоянии заряда и разряда рабочее тело движется.
Динамические накопители копят кинетическую энергию (в основном) в массивных твердых телах, находящихся во вращении. Примером динамических механических аккумуляторов энергии можно считать накопительные устройства ускорителей элементарных частиц, запасающих кинетическую энергию заряженных частиц, циклически перемещающихся по замкнутым траекториям.
Комбинированные накопители механической энергии аккумулируют и кинетическую, и потенциальную энергию. Таким накопителем считают супермаховик из сверхпрочного волокнистого материала с малым модулем упругости. В этом маховике аккумулируется кинетическая энергия и потенциальная энергия упругой деформации.
Гравитационные механические накопители
Эти накопители используют тот факт, что каждое тело, поднятое на некоторую высоту $h$ над Землей, обладает потенциальной энергией, которая способна переходить в кинетическую энергию этого тела при его опускании. При этом потенциальную энергию вычисляют при помощи формулы:
$E_p=mgh (1),$
где $m$ – масса тела, поднятого над уровнем земли; $g$ – ускорение свободного падения.
В среде гравитационных механических накопителей выделяют:
- жидкостные накопители;
- твердотельные накопители.
В жидкостных гравитационных накопителях в качестве рабочего тела используют жидкость, в этой связи у накопителей данного вида имеется ряд недостатков, например:
- жидкость может быстро испаряться;
- малая плотность рабочего тела, которая приводит к росту конструктивных размеров.
К преимуществам твердотельных накопителей относят небольшую стоимость. Существенным недостатком можно считать большую массу накопителя и большой размер. Как пример твердотельного гравитационного накопителя можно рассматривать каждый груз, поднятый выше, чем находится уровень избранной поверхности.
Кинетические накопители энергии
Среди кинетических механических накопителей энергии можно выделить:
- колебательные накопители,
- гироскопические накопители.
Колебательные накопители кинетической энергии аккумулируют энергию возвратно – поступательном движении груза в состоянии резонанса. Движения груза могут быть как поступательные, так и вращение. В этих накопителях энергия поступает и расходуется порционно, совпадая с движениями груза. Необходимость создания условий резонанса ведет к существенному усложнению механизма и делает его зависимым от настройки. Данные накопители применяются в механических часах, имеющих пружинный или гравитационный маятник.
Гироскопические накопители аккумулируют энергию маховика, который находится во вращении с большой скоростью. В настоящее время запасаемая при помощи маховика энергия достигла 3 ГДж/кг. Удельная энергия данного накопителя существенно выше, чем она же у гравитационного накопителя. К преимуществам маховиков относят возможность передачи и получения почти неограниченную мощность.
К недостаткам этих накопителей относят:
- их высокую стоимость;
- сложность изготовления;
- высокая скорость вращения маховика требует наличие сложной системы трансформации крутящего момента.
Механические накопители энергии, использующие силы упругости
Удельная емкость аккумулируемой энергии этих накопителей очень велика. Учитывая малые габариты накопителей, их энергетическая емкость обладает самым большим значением в среде механических накопителей. Массивные маховики, имеющие большие скорости вращения обладают большей энергетической емкостью в сравнении с накопителями, использующими силы упругости. Однако последние:
- могут иметь гораздо меньшую массу;
- меньше чувствительны к факторам окружающей среды;
- имеют большее время хранения энергии.
Существуют накопители энергии на основе сжатого воздуха. Данные аккумулятора накапливают энергию за счет упругости сжатого газа. Газ закачивают в баллон. В случае необходимости получения электрической энергии, газ под давлением из баллона подают на турбину, которая выполняет механическую работу или вращает электрический генератор. Если необходима небольшая мощность, то вместо турбины пользуются поршневым двигателем, который оказывается в этом случае более эффективным. Почти любой компрессор в настоящее время имеет подобный накопитель, который называют ресивером. С увеличением давления воздуха, больше энергии запасают в одном и том же объеме. Так получают большие потоки энергии.
spravochnick.ru
Какие бывают накопители энергии
Природа подарила человеку разнообразные источники энергии: солнце, ветер, реки и другие. Недостатком этих генераторов бесплатной энергии является отсутствие стабильности. Поэтому в периоды избытка энергии ее запасают в накопителях и расходуют в периоды временного спада. Накопители энергии характеризуют следующие параметры:
- объем запасаемой энергии;
- скорость ее накопления и отдачи;
- удельная плотность;
- сроки хранения энергии;
- надежность;
- стоимость изготовления и обслуживания и другие.

Методов систематизации накопителей множество. Одним из самых удобных является классификация по типу энергии, используемой в накопителе, и по способу ее накопления и отдачи. Накопители энергии подразделяются на следующие основные виды:
- механические;
- тепловые;
- электрические;
- химические.
Накопление потенциальной энергии
Суть этих устройств незамысловата. При подъеме груза происходит накопление потенциальной энергии, при опускании она совершает полезную работу. Особенности конструкции зависят от вида груза. Это может быть твердое тело, жидкость или сыпучее вещество. Как правило, конструкции устройств этого типа предельно просты, отсюда высокая надежность и длительный срок службы. Время хранения запасенной энергии зависит от долговечности материалов и может достигать тысячелетий. К сожалению, такие устройства обладают низкой удельной энергоемкостью.
Механические накопители кинетической энергии
В этих устройствах энергия хранится в движении какого-либо тела. Обычно это колебательное или поступательное движение.
Кинетическая энергия в колебательных системах сосредоточена в возвратно-поступательном движении тела. Энергия подается и расходуется порциями, в такт с движением тела. Механизм достаточно сложный и капризный в настройке. Широко используется в механических часах. Количество запасаемой энергии обычно невелико и годится только для работы самого устройства.
Накопители, использующие энергию гироскопа
Запас кинетической энергии сосредоточен во вращающемся маховике. Удельная энергия маховика значительно превосходит энергию аналогичного статического груза. Имеется возможность в короткий промежуток времени производить прием или отдачу значительной мощности. Время хранения энергии невелико, и для большинства конструкций ограничено несколькими часами. Современные технологии позволяют довести время хранения энергии до нескольких месяцев. Маховики очень чувствительны к сотрясениям. Энергия устройства находится в прямой зависимости от скорости его вращения. Поэтому в процессе накопления и отдачи энергии происходит изменение скорости вращения маховика. А для нагрузки, как правило, требуется постоянная, невысокая скорость вращения.

Более перспективными устройствами являются супермаховики. Их изготавливают из стальной ленты, синтетического волокна или проволоки. Конструкция может быть плотной или иметь пустое пространство. При наличии свободного места витки ленты перемещаются к периферии вращения, момент инерции маховика изменяется, часть энергии запасается в подвергшейся деформации пружине. В таких устройствах скорость вращения более стабильна, чем в цельнотелых конструкциях, а их энергоемкость гораздо выше. Кроме того, они более безопасны.
Современные супермаховики изготовляют из кевларового волокна. Они вращаются в вакуумной камере на магнитном подвесе. Способны сохранять энергию несколько месяцев.
Механические накопители, использующие силы упругости
Этот тип устройств способен запасать огромную удельную энергию. Из механических накопителей он обладает наибольшей энергоемкостью для устройств с габаритами в несколько сантиметров. Большие маховики с очень высокой скоростью вращения имеют гораздо большую энергоемкость, но они очень уязвимы от внешних факторов и имеют меньшее время хранения энергии.
Механические накопители, использующие энергию пружины
Способны обеспечить самую большую механическую мощность из всех классов накопителей энергии. Она ограничена лишь пределом прочности пружины. Энергия в сжатой пружине может храниться несколько десятилетий. Однако из-за постоянной деформации в металле накапливается усталость, и емкость пружины снижается. В то же время высококачественные стальные пружины при соблюдении условий эксплуатации могут работать сотни лет без ощутимой потери емкости.

Функции пружины могут выполнять любые упругие элементы. Резиновые жгуты, например, в десятки раз превосходят стальные изделия по запасаемой энергии на единицу массы. Но срок службы резины из-за химического старения составляет всего несколько лет.
Механические накопители, использующие энергию сжатых газов
В этом типе устройств накопление энергии происходит за счет сжатия газа. При наличии избытка энергии газ при помощи компрессора закачивается под давлением в баллон. По мере необходимости сжатый газ используется для вращения турбины или электрогенератора. При небольших мощностях вместо турбины целесообразно использовать поршневой мотор. Газ в емкости под давлением в сотни атмосфер обладает высокой удельной плотностью энергии в течение нескольких лет, а при наличии качественной арматуры – и десятки лет.
Накопление тепловой энергии
Большая часть территории нашей страны расположена в северных районах, поэтому значительная часть энергии вынужденно расходуется для обогрева. В связи с этим приходится регулярно решать проблему сохранения тепла в накопителе и извлечении его оттуда при необходимости.

В большинстве случаев не удается достичь высокой плотности запасаемой тепловой энергии и сколько-нибудь значительных сроков ее сохранения. Существующие эффективные устройства в силу ряда своих особенностей и высокой цены не подходят для широкого применения.
Накопление за счет теплоемкости
Это один из самых древних способов. В его основе лежит принцип накопления тепловой энергии при нагревании вещества и отдачи тепла при его охлаждении. Конструкция таких накопителей чрезвычайно проста. Им может быть кусок любого твердого вещества либо закрытая емкость с жидким теплоносителем. Накопители тепловой энергии имеют очень большой срок службы, практически неограниченное количество циклов накопления и отдачи энергии. Но время хранения не превышает нескольких суток.
Аккумулирование электрической энергии
Электрическая энергия – это самая удобная ее форма в современном мире. Именно поэтому электрические накопители получили широкое распространение и наибольшее развитие. К сожалению, удельная емкость дешевых аппаратов невелика, а приборы с большой удельной емкостью слишком дороги и недолговечны. Накопители электрической энергии – это конденсаторы, ионисторы, аккумуляторы.
Конденсаторы
Это самый массовый вид накопителей энергии. Конденсаторы способны работать при температуре от -50 до +150 градусов. Количество циклов накопления-отдачи энергии – десятки миллиардов в секунду. Соединяя несколько конденсаторов параллельно, можно легко получить емкость необходимой величины. Кроме того, существуют переменные конденсаторы. Изменение емкости таких конденсаторов может производиться механическим или электрическим способом либо воздействием температуры. Чаще всего переменные конденсаторы можно встретить в колебательных контурах.

Конденсаторы делятся на два класса – полярные и неполярные. Срок службы полярных (электролитических) меньше, чем неполярных, они больше зависят от внешних условий, но в то же время обладают большей удельной емкостью.
Как накопители энергии конденсаторы – не очень удачные приборы. Они имеют малую емкость и незначительную удельную плотность запасаемой энергии, а время ее хранения исчисляется секундами, минутами, редко часами. Конденсаторы нашли применение в основном в электронике и силовой электротехнике.
Расчет конденсатора, как правило, не вызывает затруднений. Вся необходимая информация по разным типам конденсаторов представлена в технических справочниках.
Ионисторы
Эти приборы занимают промежуточное место между полярными конденсаторами и аккумуляторами. Иногда их называют «суперконденсаторами». Соответственно, они имеют огромное количество этапов заряда-разряда, емкость больше, чем у конденсаторов, но немного меньше, чем у небольших аккумуляторов. Время хранения энергии – до нескольких недель. Ионисторы очень чувствительны к температуре.
Силовые аккумуляторы
Электрохимические аккумуляторы используются, если требуется запасать достаточно много энергии. Лучше всего для этой цели подходят свинцово-кислотные приборы. Их изобрели около 150 лет назад. И с тех пор в устройство аккумулятора не внесли ничего принципиально нового. Появилось много специализированных моделей, значительно возросло качество комплектующих изделий, повысилась надежность аккумуляторной батареи. Примечательно, что устройство аккумулятора, созданного разными производителями, для разных целей отличается лишь в незначительных деталях.
Электрохимические аккумуляторы подразделяются на тяговые и стартовые. Тяговые используются в электротранспорте, источниках бесперебойного питания, электроинструментах. Для таких аккумуляторов характерны длительный равномерный разряд и большая его глубина. Стартовые аккумуляторы могут выдать большой ток в короткий промежуток времени, но глубокий разряд для них недопустим.

Электрохимические аккумуляторы имеют ограниченное количество циклов заряда-разряда, в среднем от 250 до 2000. Даже при отсутствии эксплуатации через несколько лет они выходят из строя. Электрохимические аккумуляторы чувствительны к температуре, требуют длительного времени заряда и строгого соблюдения правил эксплуатации.
Прибор необходимо периодически подзаряжать. Заряд аккумулятора, установленного на транспортное средство, производится в движении от генератора. В зимнее время этого недостаточно, холодная батарея плохо принимает заряд, а потребление электроэнергии на запуск двигателя возрастает. Поэтому необходимо дополнительно проводить заряд аккумулятора в теплом помещении специальным зарядным устройством. Одним из существенных недостатков свинцово-кислотных приборов является их большой вес.
Аккумуляторы для маломощных устройств
Если требуются мобильные устройства с малым весом, то выбирают следующие типы аккумуляторов: никель-кадмиевые, литий-ионные, металл-гибридные, полимер-ионные. У них выше удельная емкость, но и цена много больше. Их применяют в мобильных телефонах, ноутбуках, фотоаппаратах, видеокамерах и других малогабаритных устройствах. Разные типы аккумуляторов отличаются своими параметрами: количеством циклов зарядки, сроком хранения, емкостью, размером и т. п.
Литий-ионные аккумуляторы большой мощности применяют в электромобилях и гибридных машинах. Они имеют небольшой вес, большую удельную емкость и высокую надежность. В то же время литий-ионные аккумуляторы очень пожароопасны. Возгорание может произойти от короткого замыкания, механической деформации или разрушения корпуса, нарушений режимов заряда или разряда аккумулятора. Потушить пожар довольно трудно из-за высокой активности лития.

Аккумуляторы являются основой многих приборов. Например, накопитель энергии для телефона – это компактный внешний аккумулятор, помещенный в прочный, влагозащищенный корпус. Он позволяет зарядить или запитать сотовый телефон. Мощные мобильные накопители энергии способны заряжать любые цифровые аппараты, даже ноутбуки. В таких устройствах устанавливают, как правило, литий-ионные аккумуляторы большой емкости. Накопители энергии для дома также не обходятся без аккумуляторных батарей. Но это гораздо более сложные устройства. Кроме аккумулятора в их состав входят зарядное устройство, система управления, инвертор. Аппараты могут работать как от стационарной сети, так и от других источников. Выходная мощность в среднем составляет 5 кВт.
Накопители химической энергии
Различают «топливные» и «безтопливные» типы накопителей. Для них требуются специальные технологии и нередко громоздкое высокотехнологичное оборудование. Используемые процессы позволяют получать энергию в разных видах. Термохимические реакции могут проходить как при низкой, так и при высокой температуре. Компоненты для высокотемпературных реакций вводят только тогда, когда необходимо получить энергию. До этого их хранят отдельно, в разных местах. Компоненты для низкотемпературных реакций обычно находятся в одной емкости.
Накопление энергии наработкой топлива
Этот способ включает два совершенно независимых этапа: накопление энергии («зарядка») и ее использование («разрядка»). Традиционное топливо, как правило, обладает большой удельной емкостью энергии, возможностью продолжительного хранения, удобством использования. Но жизнь не стоит на месте. Внедрение новых технологий предъявляет повышенные требования к топливу. Задача решается путем улучшения существующих и создания новых, высокоэнергетических видов топлива.
Широкому внедрению новых образцов препятствует недостаточная отработанность технологических процессов, большая пожаро- и взрывоопасность в работе, необходимость высококвалифицированного персонала, высокая стоимость технологии.
Безтопливное химическое накопление энергии
В этом виде накопителей энергия запасается за счет преобразования одних химических веществ в другие. Например, гашеная известь при нагреве переходит в негашеное состояние. При “разрядке” запасенная энергия выделяется в виде тепла и газа. Именно так происходит при гашении извести водой. Для того чтобы реакция началась, обычно достаточно соединить компоненты. В сущности, это вид термохимической реакции, только протекает она при температуре в сотни и тысячи градусов. Поэтому используемое оборудование гораздо сложнее и дороже.
fb.ru
Тяжелая энергетика | Журнал Популярная Механика
Штангисты знают, что поднять вес мало — важно его удержать. Сколько бы мы ни произвели чистой — или любой другой — энергии, от нее будет мало толка, если мы не умеем ее хранить. Но что способно накапливать гигаватт- и тераватт-часы, а в нужный момент за секунды отдать их в сеть? Только что-нибудь по‑настоящему серьезное. Водохранилища и поезда, бетонные поплавки и даже лифты-многотонники, разработанные в Новосибирске. О них мы и поговорим, вспомнив по пути школьную физику.
Профессор из Беркли Дэвид Каммен считает электросети самой сложной машиной, которую когда-либо создавало человечество: «Она самая большая, самая дорогая, включает больше всего компонентов и при этом элегантно проста. В ее основе лежит единственный принцип — приток энергии должен постоянно равняться оттоку». Система работает как ресторан быстрого питания: сколько заказано блюд, столько и приготовлено, лишнее приходится выбрасывать. Между тем потребление электроэнергии меняется постоянно и довольно ощутимо.
Взглянув на графики, легко заметить, что нагрузка на сеть следует суточным и недельным циклам и повышена во время зимних холодов. Работа солнечных электростанций с этими периодами согласуется плохо: излучение есть именно тогда, когда его энергия меньше всего нужна, — днем. А ярче всего солнце светит летом. Производство электроэнергии ветряными станциями тоже подчиняется погодным условиям. Реакторы АЭС нельзя подстраивать под нужды потребителей: они выдают постоянное количество энергии, так как должны функционировать в стабильном режиме. Регулировать подачу тока в сеть приходится, меняя объемы сжигаемого топлива на газовых и угольных ТЭС. Энергосеть постоянно балансирует между выработкой электростанций и нуждами потребителей.
Cравнение потребления и генерации электроэнергии различными источниками на примере декабря 2012 года (по данным BM Reports).
Если бы тепловые электростанции не приходилось регулировать и они могли работать всегда в оптимальном режиме, их ресурс был бы выше, а стоимость и потребление топлива — ниже. Но для этого сеть должна иметь запас энергии, который накапливался бы в периоды избыточного производства и отдавался на пиках потребления. Ну а если уж мы хотим вовсе отказаться от углеводородов и использовать только чистое электричество возобновляемых источников, то без средств для накопления энергии и стабилизации ее подачи в сеть никак не обойтись… Есть идеи?
Варианты очевидные
Электросети начали проектировать больше века назад с учетом технологий того времени, и сегодня даже в самых развитых странах они нуждаются в модернизации, в том числе во введении «амортизирующего» компонента, накопителей соответствующей мощности. Пока что такими проектами не могут похвастаться даже США: по данным за 2017 год, все имевшиеся в стране промышленные накопители имели мощность лишь около 24,2 ГВт, тогда как генерирующие мощности составили 1081 ГВт. Текущие возможности России в области накопления — чуть больше 2 ГВт, а всего мира — 175,8 ГВт.
Почасовое потребление в Великобритании в течение одного зимнего и одного летнего месяцев 2009 года. Максимум потребления пришелся на шесть часов январского утра (58,9 ГВт), минимум — на теплый субботний вечер в июле (22,3 ГВт), разница более чем вдвое.
Почти весь этот объем приходится на гидроаккумулирующие электростанции (ГАЭС). Самая большая в России Загорская ГАЭС имеет мощность 1,2 ГВт, а самая мощная в мире работает в Вирджинии. Станция Bath County мощностью 3 ГВт и высотой 380 м способна накачивать воду в верхний резервуар и спускать в нижний со скоростью около 50 тыс. т в минуту. Такие накопители превращают электричество в потенциальную энергию воды и вырабатывают его обратно с потерями лишь 30%. Однако их недостатки вполне очевидны: водохранилища требуют сложного рельефа, обширной и часто нужной площади и связаны с неизбежными потерями на испарение.
Сегодня больше 98% мировых мощностей накопителей приходится на ГАЭС, а из оставшегося количества около трети используется в химических аккумуляторах. Прежде всего, это обычные литий-ионные батареи: крошечные размеры ионов лития делают их отличными носителями заряда, позволяя добиться высокой плотности энергии. По оценке Джорджа Крабтри из Аргоннской национальной лаборатории министерства энергетики США, литий-ионным аккумуляторам для широкого применения необходимо стать как минимум впятеро более емкими и на столько же более дешевыми. Но даже в этом случае они останутся токсичными и взрывоопасными.
Некоторых их недостатков лишены альтернативные проекты: сегодня создан целый «зоопарк» электрохимических элементов. Например, аккумуляторы профессора Дональда Садоуэя на основе жидких металлических электродов и расплава соли требуют для работы высоких температур, зато они безопасны и намного дешевле литий-ионных. Однако любые батареи со временем неизбежно деградируют и уже лет через десять потребуют серьезных и регулярных вложений в обновление… Что нам остается, помимо этого?
Школьная физика
Инженеры любят простые и остроумные решения, и многие проекты накопителей основаны на довольно простой физике. Базовые формулы, позволяющие оценить энергию таких систем, проходят еще в средней школе. Скажем, вращательная кинетическая энергия пропорциональна массе и квадрату скорости, что позволяет сохранять электрическую энергию во вращении тяжелого маховика. Такие накопители отличаются великолепной управляемостью и надежностью, они используются на транспорте и даже в космосе. Однако самые мощные из них способны обеспечить разве что небольшую электростанцию, стабилизируя выдачу тока, и эффективны лишь на небольших промежутках времени — не больше четверти часа.
Из той же школьной физики мы помним, что энергия идеального газа пропорциональна его давлению, что дает возможность накопить ее в виде сжатого воздуха. Емкостью для него могут служить герметичные цистерны, как у 9-мегаваттного накопителя Next Gen CAES на одной из электростанций в Нью-Йорке, штольни заброшенных шахт или естественные пещеры-каверны. На том же принципе разницы давлений работает предложенный немецкими инженерами концепт ORES. Полые бетонные емкости погружаются на дно и подключаются к офшорной электростанции: избыток энергии они накапливают, закачивая внутрь воду, а при необходимости она под давлением сжатого внутри воздуха выбрасывается наружу, запуская генератор.
Баланс на масштабах от секунд до недель Накопители энергии, работающие на разных принципах, имеют свои преимущества и недостатки, и могут подходить для различных задач. Одни оптимальны в поддержке электростанций, другие — на этапе передачи и распределения энергии, третьи — для крупных потребителей, четвертые — для конечных пользователей, в их домах и мобильных гаджетах.
Пригодится нам и энергия тепловая: например, концерн Siemens уже сооружает для одной из ветряных электростанций под Гамбургом накопитель, запасающий энергию в тепле 100 тонн камня. Избыток выработки будет направляться на их нагрев, чтобы затем груз, остывая, превращал воду в пар, вращающий турбину генератора. Впрочем, чаще энергию градиента температуры используют для накопителей энергии на солнечных электростанциях. Зеркала концентраторов фокусируют свет, раскаляя теплоноситель (обычно расплавленный солевой раствор), который продолжает отдавать тепло и днем, и ночью, когда солнце уже не светит, — в полном согласии с изученными в школе началами термодинамики.
Еще ближе нам элементарная формула потенциальной энергии тела в поле тяжести Земли: E = mgh (где m — масса груза, h — высота его подъема, g — ускорение свободного падения). Именно в таком виде запасают ее мощные и надежные ГАЭС или проект немецкой компании Heindl Energy, поднимающий водным столбом внутри цилиндра цельный гранитный поршень диаметром до 250 м. Потенциальную энергию накапливают и тяжелые железнодорожные составы проекта ARES, которые буксируют бетонные грузы вверх и вырабатывают ток, когда спускаются с ними. Но для всего этого нужно иметь наготове холм высотой в несколько сотен метров и — как в случае с ГАЭС — большую площадь под строительство… Есть ли другие возможности?
Гравитационный накопитель Проект профессора Эдварда Хейндля обещает мощность до 8 ГВт — этого достаточно для того, чтобы обеспечивать энергией 2 млн потребителей в течение суток.
Вариант почти невероятный
Накопитель в новосибирском Академгородке много места не занимает. За самым обыкновенным забором стоит новенькое здание размером с пятиэтажку — шоу-рум, в котором размещен действующий прототип твердотельной аккумулирующей электростанции (ТАЭС) высотой 20 м и мощностью 10 кВт. Внутри здания вдоль стен расположены две узкие ячейки ТАЭС шириной около 2 м и длиной около 12.
Принцип работы их основан на накоплении потенциальной энергии: двигатель потребляет электроэнергию из сети и с помощью каната поднимает наполненные грунтом полимерные мешки. Они крепятся наверху и в любой момент готовы начать спуск, вращая вал генератора. По словам основателя проекта «Энергозапас» Андрея Брызгалова, инженеры изучили почти сотню идей для промышленных накопителей энергии, но не нашли подходящего варианта и создали собственный.
Твердотельный накопитель Полномасштабная ТАЭС будет достигать 300 м в высоту и сможет накапливать до 10 ГВт·ч. При грузообороте до 14 млн т в сутки она будет производить на грунт давление до 4 кг/см2 — меньше, чем обычная пятиэтажка. Расчетный срок службы: 50 лет.
В самом деле, Россия — страна богатая, но не рельефом. «Это практически ровный стол, — рассказывает Андрей Брызгалов, — возводить ГАЭС можно лишь в отдельных районах, остальное — равнинная плоскость». В отличие от водохранилища, ТАЭС можно установить где угодно: для строительства не требуется водохранилищ и естественного перепада высот. Мешки заполняются местным грунтом, который добывают при строительстве фундамента, а строить можно в чистом поле, которого в России достаточно.
Оптимальная мощность ТАЭС при высоте 300 м будет порядка 1 ГВт, а емкость определяется площадью накопителя и при застройке 1 км² составит 10 ГВт·ч, то есть станция займет примерно в пять раз меньше места, чем аналогичная ГАЭС. Тысячи специальных многошахтных лифтов, снабженных системой рекуперации, будут перемещать за сутки около 15 млн т груза. «Ежедневный грузооборот одной такой ТАЭС будет всемеро больше, чем у крупнейшего мирового порта, Шанхайского, — объясняет Андрей Брызгалов. — Вы представляете себе уровень задачи?» Неудивительно, что дальше начинается физика уже отнюдь не школьного уровня.
«Мы не можем позволить себе строить сразу 300-метровую башню, — говорит Андрей Брызгалов, — это по меньшей мере легкомысленно. Поэтому мы делаем конструкцию минимальных размеров, при которых она обладает свойствами полноразмерной ТАЭС». Как только проект получит господдержку в рамках Национальной технологической инициативы, в «Энергозапасе» приступят к работе. Возведение 80-метровой башни мощностью более 3 МВт позволит испытать строительные решения, которые на данный момент прошли только модельные испытания на многоядерных компьютерных кластерах.
Сложная наука
В самом деле, какой бы простой ни была высотная конструкция, ей предстоит столкнуться с опасностью землетрясений и нагрузкой ветра. Но вместо обычных решений с применением все более мощных и тяжелых несущих элементов из стали и бетона ТАЭС использует массу инженерных находок. Для борьбы с ветром ее окружат защитной «юбкой», которая раскинется на ширину примерно в четверть радиуса самой станции. Она будет превращать горизонтальное давление ветра в вертикальную нагрузку, на которую рассчитана конструкция. «Это позволяет значительно сократить расходы на металл, который применяют для компенсации изгибных нагрузок, снизить себестоимость ТАЭС и тем самым поднять ее конкурентоспособность», — объясняют разработчики.
Сейсмические колебания демпфирует сама конструкция — матрица вертикальных колонн, к каждой четверке которых подвешено до девяти 40-тонных грузов. «В любой конкретный момент перемещается лишь небольшое количество груза, остальное действует как отвес, подавляя раскачивание. Несмотря на огромную массу, даже благодаря ей мы получили самое сейсмостойкое здание в мире, — уверяет Андрей Брызгалов, — причем практически без дополнительных расходов». Легкая, простая, лишенная перекрытий, такая башня будет в несколько раз дешевле обычного здания тех же размеров.
Тип | Мощность | Время отклика | Продолжительность накопления и отдачи | Эффективность накопления-отдачи |
---|---|---|---|---|
Гравитационные / ГАЭС, ТАЭС / | МВт, ГВт | Секунды, минуты | От часов до недель | 70−85% |
Термические / солевые / | МВт | Минуты | Часы | 80−90% |
Электрохимические / МВт Li-Ion и другие / | Вт, МВт | Миллисекунды | Минуты, часы, дни | До 98% |
Механические / маховики / | Вт, кВт | Миллисекунды | Секунды, минуты | До 98% |
Химические / водород, метан, этанол и т. п. / | ГВт | От секунд до минут | Часы | До 45% |
Тип | Типичные сроки службы | Оптимальные участки использования | Плюсы | Минусы |
---|---|---|---|---|
Гравитационные / ГАЭС, ТАЭС / | Десятилетия | Генерация, распределение | Дешевизна, техн. зрелость | Требовательность к строит. участку, малая плотность |
Термические / солевые / | Десятилетия | Генерация | Простота, техн. зрелость, экономичность | Подходят лишь для солнечных электростанций с концентраторами |
Электрохимические / МВт Li-Ion и другие / | Годы | Генерация, распределение, потребление | Высокая плотность накопления, глубоко развитая технология | Подходят лишь для солнечных электростанций с концентраторами |
Механические / маховики / | Годы | Потребление | Высокая точность, отзывчивость, надежность | Не подходят для накопления в больших или достаточных масштабах |
Химические / водород, метан, этанол и т. п. / | Годы | Генерация, распределение | Технология дешева и легко масштабируется от «домашних» до промышленных масштабов | Низкая плотность накопления, опасность возгорания |
Несмотря на внешнюю простоту, разработка накопителя потребовала не только знаний сложной физики и материаловедения, но даже аэродинамики и программирования. «Возьмите, например, провод, — объясняет Андрей Брызгалов. — Ни один не выдержит десятки миллионов циклов сгибания-разгибания, а мы рассчитываем на полвека бесперебойной работы. Поэтому передача энергии между подвижными частями ТАЭС будет реализована без проводов». Накопитель ТАЭС буквально нашпигован новыми технологиями, и десятки инженерных находок уже запатентованы.
Матричные преобразователи частоты тока позволяют мягко и точно управлять работой моторов и сглаживать выдачу энергии. Сложный алгоритм автоматически координирует параллельную работу нескольких тележек-подъемников и требует лишь удаленного присмотра со стороны оператора. «У нас есть специалисты десятков направлений, — говорит Андрей Брызгалов, — и все они работают, не ожидая моментального результата и окупаемости проекта в ближайшие 2−3 года. При этом создано решение, равного которому нет нигде в мире. Теперь его можно лишь повторить, но сделать такое с нуля было возможно только в России, только в Сибири, где есть такие люди».
Впрочем, без уверенности в том, что проект рано или поздно станет прибыльным, ничего бы не состоялось. «Проблема российской энергосистемы — избыток мощностей, — продолжает Андрей Брызгалов. — Исторически сложилось так, что мы генерируем больше, чем надо, и это позволяет немало экспортировать, но и создает серьезный запрос на аккумулирующие мощности». По оценкам Navigant Research, к 2025 году этот рынок будет расти средними темпами в 60% ежегодно и достигнет 80 млрд долларов. Возможно, эти деньги преобразуют типичный российский пейзаж, и где-то у горизонта обычной бесконечной плоскости появятся и станут привычными гигантские гравитационные накопители.
Статья «Накопители: очевидные и невероятные» опубликована в журнале «Популярная механика» (№4, Апрель 2018).www.popmech.ru
Кинетический Накопитель Энергии |НПК ЭНЕРГЕТИЧЕСКОЕ ОБОРУДОВАНИЕ
Обзор существующих технологий накопления электроэнергии
В настоящее время проблема эффективного использования электрической энергии является актуальной задачей для всех сфер деятельности. Одним из путей повышения эффективности энергопользования может стать применение систем, аккумулирующих энергию генератора и выдающие ее в сеть по мере такой необходимости. Современные системы накопителей энергии способны решить различные задачи хранения и преобразования энергии, реализации оптимальных режимов работы оборудования, питания потребителей с нестандартными параметрами.
Среди ключевых функций накопителей можно выделить:
- Способность выравнивания графиков нагрузки в сети;
- Реализация системной надежности потребителей;
- Обеспечение бесперебойного питания особо важных объектов, собственных нужд электростанций и подстанций;
- Сглаживание колебаний мощности, стабилизации работы малоинерционных систем распределенной генерации.
Накопители электрической энергии в будущем станут важнейшим элементом интеллектуальных (активно-адаптивных) сетей нового поколения, без которых невозможен дальнейший качественный рост экономики.
Основные типы накопителей:
В настоящее время существует множество различных классификаций накопителей электрической энергии. Однако, с практической точки зрения, наиболее точной представляется классификация накопителей на электрохимические и физические. Первые – преобразуют электрическую энергию в химическую энергию веществ, вторые – в механическую энергию.
К электрохимическим накопителям энергии относятся:
- аккумуляторные батареи;
- накопители энергии на основе молекулярных конденсаторов.
К физическим накопителям электроэнергии относятся два вида комплексов:
- гравитационные накопители энергии (ГАЭС);
- кинетические накопители энергии (маховики).
Электрохимические накопители энергии
Свинцово-кислотные аккумуляторы
Данная электрохимическая система является одной из самых распространенных среди аккумуляторов в виду своей дешевизны, отработанной технологии производства и большому опыту эксплуатации. В свинцово-кислотных аккумуляторных батареях ( далее СКА) электролитом является раствор серной кислоты, активным веществом положительных пластин – двуокись свинца РbО2, отрицательных пластин – губчатый свинец Рb.
Свинцово-кислотные аккумуляторы достаточно широко распространены, однако, наряду с достоинствами, обладают и существенными недостатками – малой энергоемкостью (на уровне 10–30 Вт·ч/кг), малым количеством циклов заряд/разряд и низкой допустимой глубиной разряда у большинства их разновидностей.
В настоящее время доступны аккумуляторы с улучшенными ресурсными характеристиками, достигающими 3000 циклов при глубине разряда 50 %. Однако и цена таких аккумуляторов выше, чем у стандартных систем.
Никель-кадмиевые аккумуляторы
Никель-кадмиевые аккумуляторы также известны достаточно давно. Принцип действия основан на формировании гидроокиси кадмия на аноде и гидроокиси никеля – на катоде. Их энергоемкость почти в два раза выше, чем у СКА, они работоспособны при низких температурах, при этом допустимые токи заряда и разряда также существенно выше. Эти достоинства позволили никель-кадмиевым аккумуляторам найти широкое применение на транспорте, в авиации и стационарных системах, несмотря на то, что они более дороги.
Однако, никель-кадмиевым аккумуляторам присущ такой недостаток как эффект памяти – их энергоемкость резко падает при не полном разряде или заряде, для ее восстановления требуются специальные алгоритмы заряда. Также они наиболее критичны из всех типов электрохимических аккумуляторов к точному соблюдению требований по правильной эксплуатации.
Натрий-серные аккумуляторы
Энергоемкость данной системы может достигать 925 Вт·ч/кг, однако в реальности достигнуты гораздо меньшие цифры, 100–150 Вт·ч/кг. Есть ряд существенных нюансов – электролит в данной системе керамический, что обуславливает высокую рабочую температуру аккумулятора (290–360 °С).
Сегодня достигнутые на практике ресурсные характеристики натрий-серных аккумуляторов демонстрируют значения от 2000 до 4000 циклов при глубине разряда до 80-90 %. Наибольших успехов в разработке и производстве высокотемпературных аккумуляторов достигла японская компания NGK Insulators LTD.
Несмотря на неспособность хранить запасенную энергию в течение длительного времени (вся она будет израсходована на поддержание рабочей температуры электролитов), натрий-серные аккумуляторы оказались востребованы для регулирования графиков выдачи мощности и поддержания частоты переменного тока в крупных сетях Японии и США, как для возобновляемой, так и централизованной энергетики. Отсутствие дорогостоящих материалов привело к тому, что стоимость запасенной энергии для данной системы находится на уровне СКА.
Литий-ионные аккумуляторы.
Для данного типа аккумуляторов характерны высокая энергоемкость, глубокие циклы заряда разряда (70–80 %), отсутствие эффекта памяти. В то же время ресурс и стоимость таких аккумуляторов зависят от типа электрохимических систем, применяемых на катоде и аноде, а также от температуры и режимов эксплуатации.
Основной причиной незначительного распространения данного типа аккумуляторных батарей стала их взрывоопасность. Вероятность короткого замыкания и взрыва ограничивала применение литий-ионных аккумуляторов большого размера – например, в масштабах, необходимых для питания электротранспорта или применения в качестве сетевых накопителей энергии, где нужны тысячи киловатт-часов энергии.
Новое поколение данных аккумуляторных батарей, использующих ферро-фосфат лития (LiFePO4) в качестве катодного материала появилось лишь в 2003 году. . Ферро-фосфат лития оказался очень удачным материалом для использования в аккумуляторах. Он способен отдать практически весь накопленный литий, оставаясь устойчивым. При этом сохраняется главное свойство литий-ионных аккумуляторов – большая удельная емкость.
Суперконденсаторы.
Суперконденсатор представляет собой импульсное электрохимическое устройство, предназначенное для компенсации быстрых переходных процессов в различных электрических схемах. От аккумуляторов различных типов он отличается существенно меньшей энергоемкостью (единицы Вт·ч/кг) и повышенной удельной мощностью (2–10 кВт/кг). Процесс запасания энергии в суперконденсаторах осуществляется за счет разделения заряда на двух электродах с достаточно большой разностью потенциалов между ними.
Так как химических превращений веществ в процессе работы суперконденсатора не происходит (если не допускать превышения зарядных напряжений), ресурс системы достаточно велик и может превышать 100 000 циклов заряда разряда. Учитывая вышеупомянутые особенности суперконденсаторов, целесообразно их использование в гибридных схемах с аккумуляторами. В этом случае суперконденсатор реагирует на короткие пики генерации или потребления электроэнергии, увеличивая ресурс аккумулятора и снижая время отклика всей системы на внешние воздействия.
Стоит отметить, что все представленные электрохимические накопители энергии (кроме Суперконденсаторов) имеют общие существенные недостатки, в т.ч.:
Высокая удельная стоимость систем.
Необходимость соблюдения регламента зарядки/разрядки.
Специальные экологические требования к размещению и утилизации.
Необходимость регулярного обслуживания и проверки системы.
Ограниченный цикл заряда/разряда.
Невозможность реагировать на короткие всплески потребления (кроме суперконденсаторов).
Накопители энергии на основе молекулярных конденсаторов
Молекулярные накопители являются новым продуктом в сфере накопителей и в настоящее время проходят стадию создания и испытания опытных образцов.
Среди данного класса накопителей практическое применение в настоящее время нашёл лишь Сверпроводниковый Индуктивный Накопитель Энергии (СПИНЭ) небольшой энергоемкости (до 106 Дж.).
При этом промышленное внедрение СПИНЭ станет возможным лишь после разработки и создания СПИНЭ на базе высокотемпературных сверхпроводников.
СПИНЭ могут находить применение в электроэнергетике как одно из эффективных средств повышения режимной надежности и устойчивости электроэнергетических систем. При этом выделяются такие свойства индуктивных накопителей, как быстродействие, высокий КПД, возможность полной автоматизации ввода и вывода энергии, большая удельная энергоемкость, регулирование активной и реактивной мощности.
Ожидается, что к 2016-2020 гг. на базе СПИНЭ будут созданы недорогие системы хранения энергии достаточной энергоемкости, но пока технические решения по ним все еще в стадии разработки.
Физические накопители электроэнергии
Среди физических накопителей электроэнергии, получивших практическое применение в энергетике можно выделить накопители, использующие естественную гравитацию – к ним относятся Гидроаккумулирующие станции (ГАЭС) и накопители, использующие кинетическую энергию вращения маховика – так называемые накопители кинетической энергии (НКЭ).
Гидроаккумулирующие электростанции (ГАЭС).
ГАЭС являются одной из самых ранних технологий запасания больших объемов энергии. Основными факторами, определяющими возможность постройки ГАЭС, её максимальную емкость и стоимость, являются особенности рельефа местности, а также необходимость затопления значительных территорий.
Применение ГАЭС может оказаться эффективным в том случае, когда регулируется работа не одной электростанции на основе традиционных технологий или возобновляемых источников энергии, а более крупной энергосистемы, как например энергосеть крупного мегаполиса.
Строительство ГАЭС осуществляется в мире уже более 100 лет. Первая ГАЭС — Леттем (Швейцария), мощностью около 100 кВт, была введена в эксплуатацию в 1882 году. Сейчас общее количество ГАЭС в мире составляет более 460 станций, а их суммарная мощность превышает 300 млн. киловатт.
Гидроаккумулирующая электростанция является уникальным гидроэнергетическим сооружением, посредством которого удается аккумулировать (запасать) электрическую энергию, возвращая её в энергосистему по мере необходимости. В часы, когда в энергосистеме избыток электрической энергии, (преимущественно — ночью), гидроагрегаты ГАЭС работают в качестве насосов и, потребляя дешевую избыточную электроэнергию, перекачивают воду из нижнего бассейна в верхний аккумулирующий бассейн на высоту несколько десятков или сотен метров. В часы, когда в энергосистеме образуется дефицит генерирующей мощности, преимущественно — в утренние и вечерние часы, гидроагрегаты ГАЭС работают в качестве генераторов и превращают энергию потока воды — в электрическую. Она поступает в объединенную систему.
Учитывая высокую маневренность гидроэнергетического оборудования, число пусков обратимых гидроагрегатов ГАЭС, в отличие от обычных ГЭС, достигает нескольких сот (500-700) в месяц, а иногда составляет около 30 пусков в сутки.
На сегодняшний день в России таких станций всего 2: Загорская ГАЭС в Подмосковье и Ставропольская ГАЭС на трассе Большого Ставропольского канала (БСК).
Основным предназначением Загорской ГАЭС является автоматическое регулирование частоты и перетоков мощности, а также покрытие суточных пиковых нагрузок в Московской и Центральной энергосистемах.
Первая очередь Загорской ГАЭС мощностью 1200 МВт была построена в 1980—2003 годах, с 2007 года ведётся строительство второй очереди мощностью 840 МВт.
1-ая и 2-ая очередь Загорской ГАЭС способны лишь частично компенсировать дефицит маневренной регулирующей мощности в Центральном регионе России, которая сейчас составляет более 3,0 млн. кВт, в том числе в Москве и Московской области — около 2 млн. кВт.
Существенными недостатками ГАЭС являются:
Малая удельная энергоемкость,
низкий КПД,
высокие требования к месту установки,
необходимость существенного вмешательства в экологию района,
чрезвычайно высокая удельная стоимость строительства
(свыше 2 000 долл. за 1 кв. электрической мощности).
Накопители кинетической энергии (НКЭ)
Среди физических накопителей энергии на сегодняшний день наиболее перспективными являются агрегаты, работающие на принципе накопления кинетической энергии во вращающихся маховиках. Такие установки носят название накопителей кинетической энергии (НКЭ).
В качестве вращающегося и накапливающего энергию элемента могут быть использованы классические (монолитные) маховики или более современные и перспективные супермаховики. Супермаховик – это маховик высокой удельной энергоемкости, изготовленный методом навивки с натягом на упругий центр материалов с высокой одноосной прочностью – проволок, лент, волокон со связкой (склейкой). Эксплуатируется супермаховик не в воздушной среде, а в среде с пониженными сопротивлениями вращению, например вакууме.
В мире получило распространение применение модулей НКЭ, состоящих из нескольких агрегатов, для резервирования питания ответственных потребителей электроэнергии (таких как медицинские центры, банковские хранилища, атомные объекты и т.д.), а также для чистотного регулирования и сглаживания графика нагрузок в сети.
Накопители кинетической энергии имеют ряд преимуществ перед вышеуказанными системами электрохимических и физических накопителей. Их отличает:
- высокая удельная объемная энергоемкость;
- высокая, недостижимая другими накопителями, удельная мощность;
- разрыво- и взрывобезопасность. Экологическая безопасность;
- не требуется специальных защитных сооружений для установки;
- возможность работы в широком температурном диапазоне -40 — +80;
- простота эксплуатации и обслуживания;
- срок эксплуатации свыше 20 лет.
Сравнительная характеристика представленных накопителей энергии представлена ниже:
Параметры \ накопители | НКЭ на основе супермаховика | Супер Конденсаторы (ионисторы) | Аккумуляторы с жидким электролитом | Натрий-серные (горячие) аккумулятор |
Удельная мощность (без сопутствующих устройств), Вт/кг | >10000 | >1000 | 80-200 | 150 |
Удельная массовая энергоемкость(без сопутствующих устройств), Вт-ч/кг. Удельная объемная энергоемкость(без сопутствующих устройств), Вт-ч/куб. дм. | 15-300 60-550 | 10-30 15-45 | 20-100 30-150 | 200 300 |
Срок службы, лет | > 20 | < 15 | До 10 000 циклов | До 4 000 Циклов |
Удельная стоимость стр-ва,( долл. США за 1 кВтч) | 800 — 1200 | 1450 | 3500 | 2500 |
Удельная стоимость обслуживания, ( долл. США за 1 кВт в год) | 80 | 85 | 800 | 600 |
Как показывает сравнительная таблица, Накопители кинетической энергии (НКЭ) являются наиболее «гибкими» системами, отличающимися высокими эксплуатационными характеристиками, при этом обладающие самым низким удельным показателем стоимости строительства и обслуживания.
В большинстве случаев, накопители кинетической энергии (НКЭ), могут стать экономичным и выгодным решением, замещающим использование электрохимических систем накопления.
Восстановление АКБ с гарантией на срок службы
mig-energo.ru
Гравитационные накопители энергии / Habr
В Tehachapi (Калифорния) есть странная железная дорога: когда дует ветер, вагончик въезжает в гору, а когда стихает — скатывается вниз.
Технология ARES служит для аккумулирования энергии от источников периодического действия — солнечных и ветряных электростанций.
Когда выработка энергии высока (ветер дует, солнце светит), вагоны с помощью электродвигателей заезжают в гору — накапливают потенциальную энергию. Если выработка энергии падает, а потребление растет (вечер — ветер стих, солнце скрылось), вагоны скатываются, двигатели при этом работают в режиме генератора и отдают электроэнергию в сеть.
Обычно для этих целей используют воду (см. ГАЭС), но в условиях Калифорнии это не очень удобно из-за дефицита воды.
Пишут, что эффективность системы составляет 86%. И добавляют, что у системы
— более низкая стоимость жизненного цикла, чем батарей;
— более быстрая реакция, чем у ГАЭС; да и вода не требуется, что актуально для засушливых районов.
Описанная пилотная горка построена рядом с парком ветрогенераторов.
Экспериментальная тележка (5670 кг, колея 381 мм):
В планах у компании постройка по соседству в Неваде системы с объемом запасаемой энергии 12,5 мегаватт-часов.
Планируется, что это будет однопутная дорога длиной 8 км с уклоном 6,6%. Для нее потребуется 17 сцепок, каждая из которых включает 2 локомотива массой по 220 тонн и 2 вагона с бетонными блоками массой по 150 тонн.
habr.com
Механические накопители энергии
Некоторые источники энергии, например, ветродвигатели, солнечные батареи, выдают энергию неравномерно. Кроме того, крайне неравномерно потребление энергии в течение суток. Предлагаются самые разные варианты накопления электрической энергии, в том числе и механические накопители энергии, например, работающие по принципу поднятия и опускания груза.
Поднятый на определённую высоту груз, обладает запасом потенциальной энергии. Можно ветродвигателем с помощью барабана поднять груз. Когда нет ветра, то если опускать груз с помощью лебёдки, которая через редуктор соединена с генератором электрического тока, можно получать запасённую электрическую энергию.
Механический накопитель энергии
В одном из вариантов подобного устройства предлагалось использовать поочерёдно два барабана. Когда один барабан поднимает груз, то другой в это время опускает груз через редуктор, что обеспечивает равномерное вращение генератора электрической энергии. В другом варианте предлагалось подобным образом поднимать песок из шахты, а затем при необходимости в энергии опускать его ковшовым транспортёром.
Для определения эффективности подобных установок для примера попробуем рассчитать, сколько энергии можно накопить при поднятии 50 т груза на высоту 10 м.
Потенциальная энергия поднятого груза определяется по формуле:
E = m • g • h
1 кВт.ч= 3,6 мДж
E = 50000 кг • 9,8м/с • 10м = 4 900 000 Дж = 4,9 мДж = 1,36 кВт.ч
Но, для того, чтобы поднять груз на определенную высоту, нужно затратить больше энергии, чем запасённая при подъёме потенциальная энергия на величину КПД. В нашем примере расчёта принимаем, что КПД устройства для подъёма и для опускания груза составляет 70%. Это значит, что для подъёма груза нужно затратить энергии на 30% больше, чем можно накопить потенциальной энергии. При опускании груза мы получим энергии на 30% меньше, чем накопили.
В случае, когда имеется несколько механизмов или циклов имеющих свой КПД, то значения величин каждого КПД перемножаются.
КПДсистемы = КПДподъёма • КПДопускания
Тогда общий КПД при накоплении и получении энергии составит 49%. Поэтому и значения затраченной и полученной энергии различаются немногим больше, чем в два раза.
Количество затраченной на подъём груза энергии составит:
1,36 кВт.ч : 0,7 = 1,94 кВт.ч
Количество полученной при опускании груза энергии составит:
1,36 кВт.ч • 0,7 = 0,952 кВт.ч
Как видим в нашем примере расчёта механического накопителя, даже для накопления небольшого количества энергии, требуется довольно большое и не дешевое устройство. Потери энергии в механическом накопителе также слишком велики. Поэтому подобные механизмы не нашли применения.
altinfoyg.ru
Накопитель энергии – широкий класс устройств, механика работы части из которых неочевидна и не знакома среднестатистическому индивидууму

Накопитель энергии – устройство, с которым большинство из людей постоянно сталкивается в быту. Всем знаком аккумулятор мобильного телефона, автомобиля, пальчиковые батарейки, которые не предусматривают повторной зарядки. Однако понятие энергетического накопления гораздо шире представлений среднестатистического индивидуума. Есть множество теорий, футуристических проектов и изысканий. Но интересно посмотреть, что реально может накапливать энергию и уже используется в самых разных областях деятельности человека.
Потенциальная энергия
Самый неочевидный накопитель собирает показатель потенциала, поднятого на высоту тела. Это устройство знакомо многим. Часы-ходики с массивными грузиками используют именно физический потенциал. Пока одна из гирь опускается, механизм работает. Для накопления запаса энергии требуется завести часы – переместить грузы определенным способом. Другие аккумуляторы потенциала работают не таким очевидным способом.
Гидроэлектростанции
Гидроэлектростанция – самый большой энергетический накопитель потенциального типа. Работает это следующим образом:
- главная часть гидроэлектрической станции – огромная плотина. Она замыкает большую территорию, создавая водохранилище, которое наполняется рекой или другим источником воды;
- в основании железобетонной стены станции находится основное инженерное решение для производства электричества. Падающая с большой высоты вода преобразует свою потенциальную энергию в кинетическую;
- при воздействии потока воды на лопатки турбины кинетика преобразуется в электричество.
Гидроэлектростанции классического типа, а точнее, их водохранилища – накопители энергии потенциального типа. Этот источник относится к возобновляемому. Поток воды постоянно пополняет искусственное озеро, при этом предусмотрены методики отвода жидкости в период, когда объем водохранилища на максимуме, а потребности в производстве электричества нет.
Энергетические накопители потенциального типа несколько другого принципа действия используются в аккумулирующих резервуарах гидроэлектростанций. Такой тип инженерных решений относится к вспомогательному и применяется в совокупности с другим источником. Часто – в солнечных электростанциях, построенных в местностях с мягким климатом. Работает все следующим образом:
- в период максимальной солнечной активности электроэнергия, которую производит солнечная станция, не нужна, потребности городов и энергосети, в общем, малы;
- электричество направляется на работу насосов, которые закачивают воду в огромный искусственный резервуар;
- в темное время суток, если нужно направить дополнительный поток электрической мощности в общую систему, включается механика гидроэлектростанции. Потенциал накопленной воды используется для работы турбин.
Станции, которые используют накопители энергии воды, становятся все более популярными. К достоинствам такого решения относится способность не только полностью использовать мощности основного производителя, но и гарантировать круглосуточный режим отдачи электричества в общую сеть.
Существуют и решения, оперирующие твердым грузом. К ним относятся системы, построенные на простой идее:
- во время работы солнечных батарей или ветрогенераторов излишек их мощности направляется на двигатели, которые перемещают вагоны по рельсовому пути вверх, по наклонной поверхности;
- в то время, когда солнца или ветра нет, тележки двигаются вниз, на их осях расположены генераторы, производящие электричество.
Достоинств у механического решения предостаточно. Здесь малые требования к мощности двигателей, используемых для подъема груза. Для перекачки воды нужно несравненно большие величины как токов, так и давления.
Накопители потенциальной энергии имеют одно неоспоримое достоинство: запасенное можно хранить практически без потерь крайне долго. Потери воды в огромном резервуаре из-за испарения почти незаметны, а если идет речь о поднятии груза, его легко зафиксировать механически в верхней точке.
Недостаток сбора потенциальной энергии также очевиден. Чтобы получить промышленные объемы использования или долговременную работу устройства в быту, нужно или оперировать огромными массами, так сказать, энергоносителя, или гарантировать низкое потребление преобразованной энергии.
Накопители тепловой энергии
Тепловые накопители – распространенные устройства. Самый знакомый рядовому потребителю – электрический нагревательный котел. Он накапливает тепло, которое затем используется для бытовых нужд, отопления.
Менее понятный класс – тепловые накопители энергии, выполняющие роль стабилизаторов. К ним относятся:
- водонагреватели, построенные на вторичной схеме передачи тепла;
- расширительные емкости солнечных коллекторов, которые не допускают перегрева теплоносителя и стабилизируют режим работы батареи;
- теплоаккумулятор может строиться на принципе фазового перехода. Расплав нагревается до высокой температуры, при этом теплоноситель переходит из твердого состояния в жидкое.
Проблем у накопителей тепловой энергии достаточно много. К примеру:
- энергию нужно использовать быстро. С течением времени содержимое накопителя просто теряет энергию, отдавая ее в окружающую среду;
- построенные на фазовом переходе накопители сложны в эксплуатации. Здесь наблюдается изменение объема: если жидкость переводят в пар, приходится бороться с огромным давлением.
Современные системы тепловой защиты позволяют долго сохранять характеристики накопителя тепловой энергии. Но здесь играет роль баланса стоимости защиты и целевого использования энергии. Поэтому накопители тепла идеальны в роли компенсаторов. В это же время их эффективность в качестве мощного источника энергии со стабильными показателями отдачи весьма спорна.
Аккумуляторы энергии сжатого газа
Пневматический инструмент, газопоршневые генераторы, небольшие кары – вот краткий список устройств, которые используют энергию сжатого газа. Устройство накопителя энергии знакомо практически всем. Это надежная, прочная колба из стали, в которую под огромным давлением закачивается газ.
Уровень выхода энергии накопителя сжатого газа нестабилен. Он велик, пока давление внутри баллона близко к максимуму. И снижается по мере расходования газа. Для стабилизации выхода используются редукторы. Они обеспечивают постоянное давление на выходе, что не только создает оптимальные условия работы потребителя, но и продлевает срок эффективного расходования запаса газа.
Накопители энергии сжатого газа применяются и в роли компенсаторов. Стабилизация работы компрессора производится при помощи расширительной емкости. В нее закачивается газ основным двигателем, поддерживается конкретное давление. При использовании энергии пневмоинструментом, компрессор может включаться периодически, поддерживая стабильное состояние системы. Основная мощность поступает именно из накопителя, расширительного баллона, совмещенного с редуктором.
Главное достоинство аккумулятора сжатого газа – простота манипулирования. Соблюдается некий термический баланс, когда в режиме компенсатора выделенное тепло при сжатии газа соответствует количеству энергии при расширении рабочего тела. К другому плюсу относится надежность инженерного решения. Прочность баллона такова, что он может заправляться неоднократно, служить на протяжении десятков лет. Третий плюс – при наличии надежной перекрывающей арматуры или запайки емкости, газ может сохранять свои параметры и энергетику очень долго.
Накопители электрической энергии
Аккумуляцию электроэнергии можно проводить разными способами. Сегодня к самым распространенным и широко используемым средствам относятся конденсатор, ионистор, химические преобразователи, накопители заряда активных частиц.
Конденсатор
Данный класс аккумулятора электрической энергии – знакомое всем устройство, конструкцию, так называемой, лейденской банки проходят еще в школьном курсе физики. Заряд накапливается на двух пластинах. Современные конденсаторы имеют прокладку, изготовленную из полимера с высокими показателями пробоя. Это позволяет:
- накапливать большое количество энергии;
- работать большими значениями напряжения;
- гарантировать безопасность использования;
- обеспечить малые размеры накопителя.
Соединенные параллельно элементы позволяют построить батарею с нужным показателем емкости. Данный тип накопителя не может сохранять энергию долго без потерь. К тому же, собирается ее довольно мало. Но при малом потреблении конденсатор может быть достаточно эффективен. Сегодня именно такие накопители используют в аварийных светодиодных лампах.
Во время питания конденсатор заряжается, при отсутствии энергоснабжения светильник работает в течение получаса, чтобы люди могли принять меры к устранению причин перебоя, лечь спать или перевести оборудование в режим консервации.
Ионистор
Ионисторы, или, как их еще называют, суперконденсаторы, используют несколько другую схему накопления энергии. Здесь заряд распределяется в объеме рабочего тела в виде заряженных частиц. В результате достигаются огромный (по сравнению с конденсаторами) срок хранения энергии и емкость, но наблюдается крайняя чувствительность к температуре. Чем ниже температура рабочей среды, тем меньше отдача тока от накопителя энергии.
Аккумуляторы химического преобразования
Электрохимическая ячейка – основа большинства автомобильных, мотоциклетных и других привычных типов аккумуляторов. Схема работы накопителя проста:
- в результате взаимодействия пластины металла и кислоты образуются заряженные ионы;
- в ходе работы соли осаждаются на пластине из катализатора;
- по мере понижения насыщенности электролита аккумулятор истощается – уровень выдачи энергии снижается.
При зарядке происходит обратный процесс. Электролиз восстанавливает показатели электролита, переносит металл на пластину-донор. Достоинств у электрохимического аккумулятора множество. Можно получить стабильный и высокий выходной ток, что ценно для пуска мощного оборудования. Легко создать устройство с высокой емкостью, полезное для долгой работы различного оборудования.
К недостаткам электрохимической ячейки классического типа относится конечное число циклов заряда-разряда. Некоторое количество солей металла становятся инертными, пластины приходят в негодность, истощается электролит. Данные недостатки в большой степени нейтрализованы в гелевых батареях. Этот современный источник энергии содержит коллоидный электролит. В нем лучше проходят процессы образования ионов. Но есть и недостаток – повышается чувствительность к температуре. При ее понижении гель твердеет, показатель отдачи тока падает.
В качестве заключения
Накопители разного типа энергии можно рассматривать очень долго. Это механические – различные пружины. Кинетические – маховики большой массы, используемые, например, в троллейбусах. Аккумуляторы с разным типом носителя ионов – литиевые, никель-марганцевые, кадмиевые. Но использование любого типа накопителя, прежде всего, обуславливается балансом между его характеристиками и показателями потребления энергии.
‘; blockSettingArray[0][“setting_type”] = 6; blockSettingArray[0][“elementPlace”] = 2; blockSettingArray[1] = []; blockSettingArray[1][“minSymbols”] = 0; blockSettingArray[1][“minHeaders”] = 0; blockSettingArray[1][“text”] = ‘
‘; blockSettingArray[1][“setting_type”] = 6; blockSettingArray[1][“elementPlace”] = 0; blockSettingArray[3] = []; blockSettingArray[3][“minSymbols”] = 1000; blockSettingArray[3][“minHeaders”] = 0; blockSettingArray[3][“text”] = ‘
ekoenergia.ru
Добавить комментарий