Карбюратор к126г где какие жиклеры и диффузоры: -126 – – – IntoTransport.ru
Карбюратор К-126Г
Карбюратор К-126ГНа четырехцилиндровом двигателе ЗМЗ-24 автомобиля ГАЗ-24 «Волга» установлен двухкамерный карбюратор К-126Г, у которого вначале вступает в работу первичная камера, а затем вторичная.
Карбюратор имеет пусковое устройство (воздушная заслонка), систему холостого хода, главные дозирующие устройства первичной и вторичной камер, экономайзер и ускорительный насос.
На холостом ходу под действием разрежения в первичной смесительной камере топливо проходит через главный жиклер, топливный жиклер системы холостого хода и поступает в соединительный канал, где смешивается с эмульсирующим воздухом, проходящим через воздушный жиклер.
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Когда дроссельная заслонка первичной камеры открыта на небольшой угол (1—2°), через верхнее выходное отверстие системы холостого хода поступает дополнительное количество воздуха. При большем открытии дроссельной заслонки через верхнее отверстие начинает поступать топливная эмульсия. Количество топливной эмульсии, поступающей в смесительную камеру, регулируют винтом.
При дальнейшем открытии дроссельной заслонки вступает в действие главная дозирующая система первичной камеры, имеющая главный жиклер, воздушный жиклер и эмульсионную трубку. На малых и средних нагрузках двигателя главная дозирующая система и система холостого хода работают совместно, обеспечивая двигатель горючей смесью экономичного состава.
После открытия дроссельной заслонки первичной камеры более чем на 2/3 начинает открываться дроссельная заслонка вторичной камеры. Вступает в работу главная дозирующая система вторичной камеры (главный жиклер, воздушный жиклер, эмульсионная трубка, малый диффузор).
При полной нагрузке двигателя (полное открытие дроссельных заслонок) смесь обогащается экономайзером.
Клапан экономайзера начинает открываться штоком по мере открытия дроссельной заслонки вторичной камеры. Однако топливо через распылитель экономайзера начнет поступать только при почти полном открытии дроссельной заслонки и только при больших расходах воздуха (при малых расходах воздуха разрежение у устья распылителя будет недостаточным).
Рис. 2. Схема карбюратора К-126Г: 1 — воздушная заслонка, 2 — предохранительный клапан, 3 — распылитель ускорительного насоса, 4 — нагнетательный клапан, 5 — воздушный жиклер системы холостого хода, б — малый диффузор первичной камеры, 7 и 22 — воздушные жиклеры главных дозирующих систем, 8 и 16—эмульсионные трубки, 9 — смотровое окно поплавковой камеры, 10 и 17 — главные жиклеры, 11 — дроссельная заслонка первичной камеры, 12 — винт регулировки качества смеси, 13 — топливный жиклер системы холостого хода, 14 — дроссельная заслонка вторичной камеры, 15 — большой диффузор вторичной камеры, 18 — обратный клапан ускорительного насоса, 19 — клапан экономайзера, 20 — шток привода экономайзера, 21 — поршень ускорительного насоса, 23 — малый диффузор вторичной камеры, 24 — распылитель экономайзера
Ускорительный насос обогащает смесь при резком открытии дроссельных заслонок. Обратный шариковый клапан при этом закрывается, а нагнетательный игольчатый клапан открывается давлением топлива. Топливо впрыскивается через распылитель, установленный в воздушном патрубке первичной камеры.
Воздушная заслонка карбюратора в первичной камере имеет два предохранительных клапана. Уровень бензина в поплавковой камере проверяют через смотровое окно.
С 1975 г. в системе питания автомобиля ГАЗ-24 «Волга» устанавливается дополнительный трубопровод от карбюратора к топливному баку, который позволяет перепускать топливо из поплавковой камеры в бак, что облегчает пуск горячего двигателя.
Как отрегулировать карбюратор К126Г
Каждый автовладелец стремится поддерживать машину в оптимальном техническом состоянии. И чем автомобиль современнее, тем сложнее его обслуживать своими руками.
Но многие продолжают активно ездить на авто, под капотом которых располагается карбюраторный двигатель. И к числу популярных и востребованных карбюраторных систем смело можно отнести К126Г.
Причём К126 имеет множество модификаций. И каждая из них устанавливается на определённые транспортные средства. В этом случае речь идёт об автомобилях УАЗ.
Особенности устройства
Карбюратор рассматриваемой модели имеет довольно простую регулировку, а также возможность самостоятельной настройки.
Не зря К126Г активно начали ставить на автомобили из семейства УАЗ. Всего на них может стоять 3 вида карбюраторов:
- К151;
- ДААЗ Солекс;
- К126Г.
Причём последний вариант чаще всего встречается на машинах этой марки. К126Г включают в базовую комплектацию УАЗ Буханка. Также его активно ставят на УАЗ Хантер, а также УАЗ Патриот.
Этот карбюратор идеально подходит двум уазовским моторам. Это УМЗ 417819 и УМЗ 421810.
Конструктивно рассматриваемый карбюратор состоит из:
- насоса-ускорителя;
- устройства для дозировки горячего в первой камере;
- устройства дозирования во второй камере;
- экономайзера;
- воздушной заслонки;
- механизма холостого хода.
Также в устройстве имеется ряд дополнительных и мелких элементов. Но каждый из них направлен на поддержание и улучшение работы всей системы.
Как это работает
В случае с карбюратором К126Г предусмотрено сразу 2 камеры, где происходят процессы смешивания рабочей топливовоздушной смеси. Это определённые пропорции топлива и кислорода.
Когда в замке зажигания проворачивается ключ, топливо начинает поступать в первую из камер. Затем, по мере увеличения крутящего момента, образуется и во второй камере.
Конструктивные элементы карбюраторной системы позволяют пропустить в камеры строго дозированное количество топлива и воздуха. Это позволяет сформировать смесь с оптимальными пропорциями.
Если же двигателю, который работает под высокой нагрузкой, а также на больших оборотах, нужна обогащённая смесь, тогда своё слово говорит экономайзер.
С помощью электромагнитного клапана повышается расход воздуха, что происходит через находящуюся в постоянно открытом положении воздушную заслонку. Тем самым смесь обогащается.
youtube.com/embed/ogOmkiOc7cM?feature=oembed” frameborder=”0″ allow=”accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture” allowfullscreen=””/>Как выполняется настройка
Теперь можно переходить к вопросу о регулировке карбюратора типа К126Г.
Задача не самая сложная. В особенности для тех, кто уже имел дело с другими карбюраторами.
Перед тем как настроить своими силами этот карбюратор серии К 126 с пометкой Г, нужно знать, зачем вообще это делается. Регулировка применяется в ситуациях, когда необходимо устранить возникший сбой в работе системы. Также мероприятие проводится с целью повысить продуктивность работы устройства.
Самостоятельная регулировка изучаемого карбюратора К126Г может осуществляться по разным параметрам, включая расход топлива:
- стабилизировать работу насоса-ускорителя;
- установить минимальные параметры для холостого хода;
- проконтролировать качество соединений в карбюраторном узле;
- сократить расход горючего в зависимости от режима эксплуатации;
- поднять или снизить поддерживаемый постоянный уровень топлива внутри поплавковой камеры;
- проверить эффективность и результативность срабатывания при активации экономайзера;
- отрегулировать пропускную способность со стороны жиклёров.
Важно учитывать, что регулировка по любому из этих параметров всегда проводится лишь при условии выключенного двигателя.
В зависимости от ситуации, может потребоваться дождаться полного остывания ДВС. В других же случаях, наоборот, работать на прогретом моторе и проверять правильность настроек.
Чаще всего требуется регулировать расход смеси, состоящей из горючего и воздуха.
Одним из ключевых преимуществ карбюратора К126Г является то, что для регулировки разбирать всю конструкцию не обязательно. Все необходимые мероприятия можно выполнить, просто подняв капот.
Регулировка расхода
Поскольку в основном требуется в случае с К126Г регулировка расхода топлива, то изучать карбюратор и его настройки будет логично начать с этого пункта.
На корпусе устройства предусмотрены 2 небольших винта. Каждый из этих винтов отвечает за управление подачей смеси к цилиндрам двигателя. И это винты качества.
Если посмотреть сбоку около привода дроссельной заслонки, то там будет установлен ещё один винт. Это уже винт количества. Его основная задача в обеспечении необходимого объёма топлива, которое поступает в двигатель для последующего смешивания и сгорания.
Если требуется регулировка расхода топлива и перед вами находится карбюратор модели К126Г, тогда потребуется выполнить следующие манипуляции:
- Заглушить мотор и дождаться его полного остывания. Работать нужно при холодном двигателе. Когда он остынет, следует закрутить винты качества. Делайте это до упора.
- Теперь каждый из винтов необходимо открутить. Ровно на 3 оборота.
- Заводите мотор и ждите, чтобы ДВС вышел на свою нормальную рабочую температуру.
- С помощью винта количества нужно задать частоту вращения двигателя примерно на 600 оборотах за минуту.
Делается это путём постепенного подкручивания регулировочного винта.
- Теперь закручивается винт качества со стороны первой камеры. Делать это нужно до момента, пока не появятся явные признаки нестабильной работы силовой установки. То есть будет ощущаться нехватка топлива.
- Дождавшись первого сбоя в работе, винта качества следует провернуть назад буквально на 1/8 от полного оборота. При этом следите, чтобы двигатель функционировал ровно.
- Аналогичную регулировку следует выполнить с использованием винта качества, но уже от второй камеры.
- Затем, взявшись за винт количества, установить нормальные обороты холостого хода. Это около 900-1000 оборотов за минуту.
Как видите, настройка карбюратора в плане нормализации расхода топлива на модели К126Г не представляет собой ничего сложного.
Но для водителя важно понимать, что и зачем он делает на каждом из этапов. Только в этом случае настройка обеспечит нужный результат.
Что указывает на неисправности
У карбюратора рассматриваемой модели К126Г есть свои неисправности, характерные именно для этого устройства.
В основном все они имеют отношение к сокращению пропускной способности жиклёров, выработке ресурса насоса, а также к зазорам в дроссельных заслонках. Поэтому периодически автовладельцы сталкиваются разбалансировкой работы холостого хода. В итоге мотор заливает, либо он ощущает острую нехватку горючего. Смесь оказывается обеднённой.
Есть несколько признаков, указывающих на то, что карбюратору требуется ремонт или регулировка:
- резко повышается количество расходуемого горючего;
- при высоких оборотах проявляются перебои, машина движется рывками;
- двигатель запускается не с первого раза, неуверенно и нестабильно;
- при движении появляется нехарактерный для нормально настроенного двигателя шум;
- во время поездок ощущаются вибрации, которых раньше не было;
- при торможении, либо же при резком наборе скорости из выхлопной трубы активно выходит густой чёрный дым.
В работе любого карбюратора, включая К126Г, огромную роль играют установленные жиклёры. Фактически это пробки, в которых имеется несколько отверстий конкретного диаметра. За счёт этих отверстий проходит воздух или горючее. Это позволяет своевременно формировать топливовоздушную смесь.
Но при заливке топлива низкого качества жиклёры начинают загрязняться. Из-за засорения мотор не получает необходимое количество топлива.
Поэтому одной из задач является очистка этих самых жиклёров. Преимущество системы в том, что разбирать узел не требуется. Каждый из жиклёров можно отдельно извлечь из корпуса без сложных демонтажных работ.
Разборка
Увы, не всегда одними только вращениями винтов можно выполнить настройку карбюраторной системы.
В некоторых случаях, когда карбюратор имеет серьёзные загрязнения, его придётся демонтировать, а затем чистить и настраивать.
Вообще снять с машины К126Г не так сложно. Достаточно отключить все разъёмы, шланги и магистрали, открутить гайки и со шпилек, прихватив и прокладку, снять узел.
Куда сложнее разобрать карбюратор на отдельные компоненты, его составляющие.
Главная задача, из-за которых проводится разборка, — это промывка всех внутренних полостей. Часто из-за их загрязнения не удаётся обычным образом настроить систему и вернуть карбюратору стабильную работу.
Такие мероприятия относятся к регулировке, а не являются ремонтными работами.
Приступать к разборке нужно лишь при условии, что перед этим корпус и внешние элементы были тщательно очищены от загрязнений. В этой ситуации отличным помощником станет очиститель для карбюраторов.
Разбирается К126Г согласно такому алгоритму:
- сначала нужно расшплинтовать крепления тяги имеющегося рычага;
- затем следует извлечь из появившегося отверстия конец тяги, отвечающей за малые обороты;
- также откручиваются 7 небольших винтов, с помощью которых удерживается крышка от поплавковой камеры;
- крышка аккуратно поднимается, а затем снимается;
- под крышкой будет располагаться прокладка, и её важно не повредить в процессе демонтажа;
- теперь можно из полости самой камеры достать поплавковую ось и непосредственно сам поплавок;
- схватившись за пружинку, параллельно извлекается и игла от топливного клапана;
- чтобы снять воздушную заслонку, потребуется открутить пару винтов крепления;
- затем откручивается винт, фиксирующий втулку приводного рычага;
- заслонку следует вытаскивать, не отделяя от рычага и возвратной пружины;
- ещё необходимо открутить пробку фильтра, а также достать сеточку;
- на следующем этапе разбирается поплавковая камера;
- все компоненты нужно аккуратно отделить друг от друга и вытащить строго в вертикальном положении;
- с внешней стороны корпуса карбюратора выключаются пробки, чтобы добраться до жиклёров в первой и во второй камере;
- это позволит теперь достать сами жиклёры и клапан экономайзера;
- внутри карбюратора остаётся лишь диффузор со смесительным отделом;
- трогать малые диффузоры категорически нельзя, поскольку самостоятельно вернуть их на место уже не получится.
На этом разборка завершена.
Процедура очистки
Поскольку регулировка винтами качества и количества оказалась малоэффективной по причине загрязнения карбюратора, его пришлось разбирать, а затем очищать.
В основном нагар и загрязнения образуются в жиклёрах, воздушных заслонках, а также в ёмкости камеры с поплавком.
Каждый перечисленный элемент после снятия следует промыть, прочистить и продуть.
К жиклёрам подход особенный. Если хоть немного изменить поверхность или повредить элементы, то двигатель стабильно работать не будет. Поверхность пробок категорически нельзя мыть. Для очистки следует использовать медные проволоки и зубочистки. Старайтесь очищать так, чтобы минимально касаться металлической поверхности.
Завершив чистку, продуйте жиклёры с помощью сжатого воздуха. Можно взять обычный баллончик, либо же компрессор.
Столь деликатное отношение для воздушной заслонки не требуется. Её обычно укладывают с другими металлическими элементами в ёмкость, заливают растворителем и вымачивают в течение 2-3 часов. Затем важно тщательно всё просушить и продуть.
Поплавковую камеру можно довольно быстро очистить от всех загрязнений. Для этого внутрь заливается карбюраторный очиститель. Дайте ему настояться и выполнить свои функции. Обычно 1,5-2 часов бывает достаточно. Затем возьмите ветошь без ворса и протрите все полости. Не лишним будет продуть узел с помощью сжатого воздуха.
Теперь вся система собирается в обратной последовательности. Возможно, прокладку потребуется заменить.
После сборки делается тестовый запуск двигателя. Есть высокая вероятность, что после разборки и сборки карбюратор не будет работать идеально. Поэтому потребуется выполнить регулировку, используя винты качества и винт количества.
Полезные рекомендации
Занимаясь обслуживанием карбюратора типа К126Г, водитель может самостоятельно выполнять все необходимые мероприятия.
Чтобы было проще проводить настройку и регулировку, отталкивайтесь от оптимальных параметров, актуальных для этой модели карбюратора:
- Уровень жидкости в поплавковой камере должен располагаться в диапазоне от 18,5 до 21,5 мм ниже, чем верхний предел.
Если уровень окажется выше рекомендуемого, тогда можно немного подогнуть кронштейн на поплавке.
- Между воздушными заслонками и корпусом зазор не должен составлять более чем 0,2 мм. Если он будет больше, тогда про нормальную работу придётся забыть. Требуется отрегулировать и восстановить нужный зазор.
- Собрав все компоненты, следите за тем, чтобы ни из каких разъёмов или соединений топливо не вытекало. Иначе это говорит о неправильной сборке, либо об износе или поломке отдельных компонентов.
- Минимально разрешённые показатели оборотов двигателя, когда он работает на холостом ходу, составляют 400 об/мин.
- Когда двигатель меняет режим работы, переходя с одного на другой, никаких рывков или провалов ощущаться не должно. Иначе нужно заново проводить регулировку.
Справиться с настройками карбюратора типа К126Г может практически каждый.
У этой модели простая и понятная конструкция. Производитель предусмотрел всё, чтобы водитель при необходимости мог самостоятельно обслужить и отрегулировать узел.
Приходилось ли сталкиваться с карбюратором К126Г? На какую машину он был установлен? Что скажете о сложности его регулировки, разборки или обслуживания? Какие сильные и слабые стороны можете отметить?
Ждём ваших ответов.
Подпишитесь, оставьте комментарий и расскажите о нас друзьям!
Техническое введение в авиационный карбюратор
Карбюратор является частью системы впуска двигателя и отвечает за сбор и смешивание воздуха и топлива. Затем эта смесь направляется в каждый цилиндр, где она воспламеняется в рамках цикла четырехтактного двигателя.
Карбюратор по-прежнему является наиболее часто используемым устройством в легких самолетах для распыления и смешивания топлива и воздуха, необходимых для сгорания. Альтернативой является система впрыска топлива. В двигателях с впрыском топлива используется насос и система распределения топлива для впрыска топлива непосредственно в систему впуска через набор топливных форсунок. Впрыск топлива в значительной степени заменил карбюрацию в автомобильной промышленности, но не в двигателях легких поршневых самолетов.
Карбюратор
Карбюратор (или карбюратор) представляет собой механическое устройство, использующее принцип трубки Вентури для распыления жидкого топлива и смешивания его с воздухом в правильном соотношении для оптимального сгорания. Эта смесь затем направляется во впускной коллектор двигателя, где она сгорает.
Физика трубки Вентури
Трубка Вентури — это простое устройство, в котором используются два физических принципа: закон сохранения массы и уравнение Бернулли для определения соотношения между скорость, давление, и площадь через сужающуюся и расширяющуюся трубку, по которой проходит воздух.
Рисунок 1: Вентури — устройство управления потоком Закон сохранения массы утверждает, что масса не может быть создана или уничтожена, а это означает, что масса в замкнутой системе должна оставаться постоянной. Это можно записать между любыми двумя точками трубки Вентури следующим образом:
$$ \rho_{1}A_{1}V_{1} = \rho_{2}A_{2}V_{2} $$
Предположим, что воздух несжимаем (это правильное предположение при скоростях ниже 0,3 Маха), плотность воздуха остается постоянной через трубку Вентури, поэтому член плотности можно исключить из обеих частей уравнения.
$$ A_{1}V_{1} = A_{2}V_{2} $$
Таким образом, скорость в горловине трубки Вентури является функцией отношения площадей. Поскольку \( A_{1} > A_{2} \), это означает, что скорость в горловине трубки Вентури больше, чем на входе.
$$ V_{2} = \frac{A_{1}}{A_{2}} $$
Уравнение Бернулли справедливо для потока несжимаемой жидкости между любыми двумя точками вдоль трубки Вентури и позволяет нам связать разницу давлений между на входе и горловине до полученной разности скоростей. Уравнение непрерывности показывает нам, что \(V_{2} > V_{1} \), и теперь мы можем изменить уравнение Бернулли и показать, что давление в горловине падает по мере увеличения скорости в горловине.
Из анализа Вентури можно сделать следующие выводы:
- Скорость в горловине увеличивается по сравнению с входным отверстием.
- Давление на горловине уменьшается по сравнению с входом.
Карбюратор использует это увеличение скорости и соответствующий перепад давления в горловине Вентури для всасывания топлива в воздушный поток, где оно смешивается с всасываемым воздухом.
Устройство карбюратора и работа
Наиболее распространенным типом карбюратора, используемым в легких самолетах, является поплавковый карбюратор , названный в честь поплавка, используемого в топливной камере для регулирования уровня топлива. Схема типичного поплавкового карбюратора показана ниже.
Рисунок 3: Схема поплавкового карбюратораПоплавковая камера
Карбюратор разделен на две отдельные области: топливная камера и камера Вентури . Топливо поступает в топливную камеру через топливную систему, где поплавок регулирует уровень в камере. Этот поплавок работает так же, как поплавок в обычном бачке унитаза. Плавучая часть поплавка всегда будет плавать на поверхности жидкого топлива. Поплавок соединен с рычажной системой, которая заканчивается игольчатым клапаном. Когда уровень топлива в поплавковой камере поднимается или падает, поплавок перемещается вместе с уровнем топлива, открывая или закрывая клапан. Это регулирует общее количество топлива, находящегося в камере, и поддерживает почти постоянный уровень топлива во время работы двигателя. Поплавок предназначен для поддержания уровня топлива в камере ниже уровня топливораздаточной форсунки. Уровень топлива должен оставаться ниже форсунки, чтобы топливо не вытекало из карбюратора, когда двигатель не работает.
Нагнетательная форсунка
Проходы между поплавковой камерой и секцией Вентури карбюратора обеспечивают проход для всасывания жидкого топлива из камеры в нагнетательную форсунку, поскольку всасываемый воздух ускоряется действием трубки Вентури. Камера вентилируется и поэтому всегда остается при окружающем атмосферном давлении. Скорость воздуха, поступающего во входное отверстие трубки Вентури, увеличивается с соответствующим падением давления в горловине Вентури. Нагнетательный патрубок расположен в горловине, где давление самое низкое. Это создает градиент давления между поплавковой камерой (атмосферное давление) и нагнетательным соплом (давление ниже атмосферного), в результате чего топливо всасывается из камеры через дозирующий жиклер в поток Вентури у нагнетательного сопла.
Дозирующий жиклер
Дозирующий жиклер представляет собой отверстие (резьбовой клапан с отверстием посередине), диаметр которого определяет максимальный расход топлива из поплавковой камеры в нагнетательный патрубок. Работа двигателя при полностью открытой дроссельной заслонке без дозирующего жиклера приведет к слишком большому расходу топлива, который двигатель не сможет эффективно потреблять. Отверстие ограничивает это до максимального желаемого расхода топлива.
Увеличение скорости в горловине Вентури в сочетании с геометрией диффузора приводит к мгновенному распылению топлива (распаду жидкости на капли). Затем распыленное топливо смешивается с поступающим воздухом, направляется через впускной коллектор двигателя в камеры сгорания, где воспламеняется.
Выпуск воздуха
Перепад давления между поплавковой камерой и горловиной Вентури называется дозирующей силой . Измерительное усилие увеличивается при открытии дроссельной заслонки из-за увеличения массового расхода (скорости воздушного потока) через трубку Вентури. При более низких настройках дроссельной заслонки дозирующее усилие уменьшается и может быть не в состоянии обеспечить двигатель достаточным количеством топлива. Это требует включения воздухоотводчика в сопло диффузора, чтобы способствовать испарению топлива и обеспечивать более равномерный выброс топлива во всем диапазоне настроек дроссельной заслонки.
Рисунок 4: Отбираемый воздух поступает в диффузор карбюратора, чтобы помочь распылить топливо диффузор с помощью трубки Вентури.
Дроссель двигателя
Объем топливно-воздушной смеси, поступающей во впускной коллектор, и соотношение воздуха и топлива в этой смеси регулируются рычагами дроссельной заслонки и смеси соответственно.
Рис. 5: Рычаг дроссельной заслонки и смеси легкого самолетаРычаги управления дроссельной заслонкой и смесью расположены в кабине и дают пилоту прямой контроль над выходной мощностью (дроссель) и соотношением воздух-топливо (смесь).
Рычаг дроссельной заслонки управляет дроссельной заслонкой, расположенной в трубке Вентури карбюратора. При открытии дроссельной заслонки открывается клапан, который позволяет большему объему воздушно-топливной смеси поступать в камеры сгорания двигателя. В самолете с винтом фиксированного шага открытие дроссельной заслонки приводит к увеличению оборотов винта и соответствующему увеличению тяги. Если скорость гребного винта регулируется (винтовой винт с постоянной скоростью), то открытие дроссельной заслонки приведет к увеличению давления в коллекторе, в то время как скорость гребного винта останется неизменной.
Закрытие дроссельной заслонки приводит к закрытию дроссельной заслонки, которая ограничивает объем топливно-воздушной смеси, поступающей в двигатель. Когда дроссельная заслонка находится в полностью закрытом (холостом) положении, скорость потока через трубку Вентури может быть настолько низкой, что двигатель не может работать на холостом ходу без вмешательства. Низкий расход воздуха через трубку Вентури ограничивает перепад давления в горловине, что, в свою очередь, ограничивает всасывание топлива из поплавковой камеры в нагнетательный патрубок.
Простой проход
В карбюратор встроен канал холостого хода, позволяющий двигателю работать на холостом ходу. Это проход, который обходит трубку Вентури и обеспечивает путь для потока топлива непосредственно из поплавковой камеры к стороне низкого давления дроссельной заслонки. Закрытие дроссельного клапана создает область высокого давления на стороне Вентури клапана. Давление со стороны двигателя дроссельной заслонки ниже из-за всасывающего действия поршней. Это низкое давление всасывает топливо через байпас холостого хода в двигатель. В систему холостого хода встроен канал для отвода воздуха, позволяющий воздуху и топливу распыляться и смешиваться перед поступлением во впускной коллектор двигателя.
Когда дроссельная заслонка открыта, перепад давления в диффузорном сопле снова становится достаточно сильным, чтобы всасывать топливо через главный диффузор. Это восстанавливает нормальную работу карбюратора, и топливо не проходит через систему холостого хода.
Рисунок 6: Канал холостого хода в карбюратореРегулятор смеси
Соотношение топлива и воздуха, поступающего в коллектор двигателя, называется смесью и регулируется рычагом в кабине. Рычаги смеси почти всегда окрашены в красный цвет и обычно располагаются справа от рычага дроссельной заслонки.
Перемещение рычага смеси вперед позволяет большему количеству топлива поступать в нагнетательный патрубок карбюратора Вентури, увеличивая соотношение топлива и воздуха. Это называется обогащением смеси . Потянув рычаг управления смесью назад, вы позволите меньшему количеству топлива попасть в трубку Вентури, уменьшая или обедняя смесь . Вытягивание рычага смеси до упора назад (или наружу на рычагах смеси плунжерного типа) приводит к ситуации, когда топливо не поступает в трубку Вентури. Без поступления топлива в двигатель зажигание невозможно, двигатель останавливается, и говорят, что смесь находится на уровне 9.0009 отключение холостого хода .
Рисунок 7: Рычаг смеси регулирует соотношение топливно-воздушной смесиСистемы контроля смеси
Рычаг смеси в кабине соединен с карбюратором и регулирует количество топлива, проходящего через дозирующий жиклер. Есть две системы управления смесью в карбюраторе, которые в основном используются в легких самолетах: управление игольчатым типом и управление обратным всасыванием.
Игольчатый тип
Регулятор смеси игольчатого типа состоит из игольчатого клапана, расположенного на дозирующем жиклере, который соединен с рычагом смеси в кабине. По мере обогащения смеси (рычаг перемещается вперед) игольчатый клапан отходит от отверстия дозирующего жиклера, позволяя большему количеству топлива пройти к соплу диффузора. И наоборот, обеднение смеси приводит к тому, что игольчатый клапан располагается ближе к жиклеру, что уменьшает подачу топлива в трубку Вентури. Если рычаг смесителя закрыт на отключение холостого хода (ICO), клапан полностью входит в отверстие, перекрывая подачу топлива в двигатель.
Рисунок 8: Регулятор смеси игольчатого типаРегулятор обратного всасывания
Регулятор обратного всасывания — еще один широко используемый метод регулирования скорости потока топлива в трубку Вентури. Управление потоком достигается путем изменения перепада давления между трубкой Вентури и поплавковой камерой с помощью регулирующего клапана и линии обратного всасывания, которая соединяет поплавковую камеру с трубкой Вентури.
Когда рычаг управления смесью находится в положении «полная богатая смесь», клапан соединяет поплавковую камеру с линией, открытой в атмосферу. Это обеспечивает максимальный перепад давления между камерой и трубкой Вентури и приводит к наибольшему потоку топлива в диффузор.
По мере постепенного обеднения смеси атмосферный клапан закрывается, и давление в поплавковой камере падает в результате всасывания воздуха через канал между камерой и трубкой Вентури. Падение давления в камере приводит к меньшему перепаду давления между камерой и трубкой Вентури, что ограничивает скорость потока топлива, тем самым обедняя смесь.
Когда рычаг управления смесью полностью возвращен в положение отсечки холостого хода, регулирующий клапан полностью закрыт для атмосферы и скорее открыт для канала отсечки холостого хода, который соединяет поплавковую камеру со стороной низкого давления двигатель. Это вызывает перепад давления в камере больше, чем перепад на трубке Вентури, эффективно герметизируя топливо в камере и перекрывая подачу к двигателю.
Ускорительная система
Быстрое открытие дроссельной заслонки с более низкой мощности на высокую приводит к быстрому попаданию большого объема воздуха в трубку Вентури при открытии дроссельной заслонки. Система дозирования топлива в карбюраторе реагирует на изменение положения дроссельной заслонки медленнее, чем воздух через впуск, что приводит к кратковременному снижению соотношения топливо-воздух. Это временно обедняет смесь и может привести к тому, что двигатель будет медленно реагировать на изменение положения дроссельной заслонки или даже «заикаться» из-за недостатка топлива в смеси. Одним из способов преодоления этого является использование небольшого поршневого насоса в карбюраторе, который впрыскивает дополнительное топливо в трубку Вентури. Это временно обогащает смесь до тех пор, пока дозирующая система не сможет наверстать упущенное.
Экономайзер
Экономайзер представляет собой игольчатый клапан, который открывается при более высоких настройках мощности, позволяя дополнительному топливу проходить в обход основного дозирующего жиклера и поступать непосредственно в нагнетательный патрубок. Это приводит к обогащению смеси, что необходимо при высоких настройках мощности, чтобы помочь в охлаждении цилиндров и помочь избежать детонации.
Влияние высоты на настройки смеси
Соотношения смеси указаны в терминах отношения массы топлива к массе воздуха , а не по объему. Энергия, выделяемая при воспламенении оптимальной смеси топлива и воздуха, называется теплотворной способностью топлива и обычно определяется как функция массы топлива.
Удельная энергия топлива – это количество энергии, выделяемой топливом на единицу массы топлива. Это предполагает, что топливо полностью сгорает на воздухе и после сгорания ничего не остается. Типичные значения удельной энергии Avgas 100LL, Jet-A и Jet-A1 приведены в таблице ниже.
Топливо | Удельная энергия (МДж/кг) |
---|---|
Авгас 100LL | 43,5 |
Джет-А | 43,0 |
Джет-А1 | 42,8 |
Указанные выше значения удельной энергии достигаются только в том случае, если топливно-воздушная смесь, поступающая в камеру сгорания, такова, что после сгорания не остается несгоревшего топлива. Это произойдет при оптимальном соотношении компонентов смеси.
Тест показал, что это соотношение составляет около 1:15. То есть 1 часть топлива на 15 частей воздуха (по массе).
Воздух становится менее плотным при повышении температуры и на больших высотах. Это напрямую влияет на массу воздуха, поступающего на впуск двигателя. Таким образом, чтобы поддерживать оптимальное соотношение смеси, пилот должен постепенно обеднять смесь по мере набора высоты самолета и обогащать смесь по мере снижения самолета, чтобы компенсировать изменение массы воздуха, поступающего в двигатель.
Лучшая мощность
Лучшая смесь мощности — это просто настройка смеси, которая позволяет двигателю развивать максимальную мощность. Настройки этой смеси находятся где-то между 1:11,5 и 1:15.
Наилучшая экономия
Настройка наилучшей экономичной смеси максимизирует отношение вырабатываемой мощности к сожженному топливу.
$$ \frac{Мощность \ Произведено}{Топливо \ Расход} = Максимум $$
Это происходит при настройке смеси между 1:15,5 и 1:18. Эти настройки смеси беднее, чем наилучшие настройки мощности (меньше топлива на массу воздуха), и поэтому не производят столько мощности, сколько более богатые настройки мощности; однако это компенсируется улучшенным расходом топлива.
Обеднение смеси
Оптимальную настройку смеси можно выполнить, сверяясь с указателем температуры выхлопных газов (EGT) в кабине. Температура, при которой выхлопные газы покидают двигатель, дает хорошее представление об эффективности сгорания. Более богатые смеси дают более низкую температуру выхлопных газов, поскольку несгоревшее топливо способствует охлаждению двигателя.
При обеднении смеси температура отработавших газов повышается до максимума, прежде чем становится заметным ее падение. Пик EGT (соответствующий наиболее эффективной точке) всегда наблюдается при одном и том же соотношении топливо-воздух (настройка смеси), но будет происходить при другом положении рычага смеси, поскольку плотность воздуха меняется в зависимости от температуры и высоты.
Метод установки оптимальной смеси включает обеднение смеси до тех пор, пока EGT не достигнет максимального значения, а затем небольшое обогащение для снижения температуры в соответствии с руководством по летной эксплуатации. Обратитесь к руководству по летной эксплуатации вашего самолета для получения подробной информации о том, как именно обеднять смесь для достижения наилучшей мощности или наилучшей экономичности.
Загрязнение свечей зажигания
Работа двигателя на слишком богатой смеси может привести к чрезмерному нагарообразованию на свечах зажигания. Это нарушает нормальную работу свечи зажигания, перенаправляя высокое напряжение от наконечника, что может привести к тому, что свеча зажигания будет работать с перерывами или вообще не загорится. Это называется загрязнением свечи зажигания и проявляется в виде неравномерной работы двигателя и перепада магнето, превышающего максимальное значение, указанное производителем во время испытаний на разгон.
Если подозревается загрязнение свечей зажигания во время запуска двигателя, то одним из возможных решений является обеднение смеси для увеличения выхлопной трубы и запуск двигателя на высоких оборотах в течение короткого периода времени. Это приводит к сжиганию остаточного углерода на свечах зажигания, что приводит к более плавной работе двигателя. Затем можно повторить тест разгона, чтобы проверить, не уменьшилось ли падение оборотов между магнето. Обратитесь к руководству по летной эксплуатации вашего самолета для получения конкретных рекомендаций и продолжайте полет только в том случае, если падение магнето находится в пределах спецификации производителя.
Обледенение карбюратора
Одним из самых больших недостатков использования карбюратора является склонность к скоплению льда в трубке Вентури. Любое скопление льда будет ограничивать подачу смеси к двигателю, что может привести к потере мощности двигателя, а в крайних случаях – к отказу двигателя.
Ледяное образование
Сокращение Вентури вызывает увеличение скорости и соответствующее падение давления в горловине. Это падение давления также приводит к падению температуры в горловине в соответствии с законом идеального газа.
$$ PV = nRT $$
Где:
\( P: \) Давление
\( V: \) Объем
\(n: \) Количество вещества
\( Р : \) Постоянная идеального газа
\( T: \) Температура
Испарение топлива Обледенение
Сопло диффузора конструктивно расположено в горловине. Именно здесь распыленное жидкое топливо вводится в воздушный поток и мгновенно испаряется. Для изменения состояния топлива из жидкого в газообразное требуется энергия. Это ничем не отличается от того, как чайник требует энергии в виде нагревательного элемента для кипячения воды и называется 9. 0009 скрытая теплота испарения . Энергия, необходимая для испарения топлива, извлекается из воздуха, проходящего через горловину, что приводит к еще большему снижению температуры в горловине .
Сочетание падения температуры из-за геометрии трубки Вентури и падения из-за скрытой теплоты, необходимой для испарения топлива, может довольно легко привести к ситуации, когда температура в горловине опустится ниже точки замерзания . Если это произойдет, любая влага в воздухе, поступающем в трубку Вентури, может замерзнуть и прилипнуть к стенкам трубки Вентури.
Этот тип обледенения называется обледенение в результате испарения топлива и может происходить при температуре окружающей среды до 100 °F (38 °C) при надлежащих условиях влажности. Обледенение наиболее вероятно при температуре 70°F (21°C) или ниже, а относительная влажность выше 80 %.
Приведенная ниже диаграмма вероятности обледенения показывает, что обледенение карбюратора может происходить в очень широком диапазоне температур и влажности и всегда должно быть в центре внимания пилота, особенно на критических этапах полета, таких как взлет и посадка. Обледенение карбюратора можно уменьшить с помощью подогрева карбюратора, который будет более подробно обсуждаться ниже.
Обледенение дроссельной заслонки
Обледенение дроссельной заслонки — еще одна форма обледенения, проявляющаяся из-за конструкции карбюратора. Здесь лед образуется на задней стороне дроссельной заслонки, обычно когда дроссельная заслонка находится в частично закрытом положении. За дроссельной заслонкой образуется область низкого давления из-за возникающего воздушного потока, что приводит к резкому падению давления на клапане. Падение давления снижает температуру ниже точки замерзания, и любая влага в воздухе замерзает и осаждается на клапане.
Обледенение дроссельной заслонки ограничивает поступление воздуха к двигателю почти так же, как испаряющееся обледенение, за исключением того, что для заметной потери мощности требуется лишь небольшой объем льда. Это связано с уже относительно ограниченным проходом, который диктует настройка низкого дросселя.
Обледенение от ударов
Это третий тип обледенения, которое может образоваться на карбюраторе или вокруг него. Ударный лед может скапливаться на металлических компонентах в холодные дни, когда температура поверхности падает ниже точки замерзания. Обычно ударный лед проявляется при полете по снегу, мокрому снегу или ледяному дождю; те же условия, когда высок риск обледенения конструкции планера.
Выявление и предотвращение
Обледенение карбюратора ограничивает выходную мощность двигателя и, таким образом, проявляется в виде потери оборотов в самолетах с винтом фиксированного шага и потери давления во впускном коллекторе в самолетах с винтом постоянной скорости. Неровная работа двигателя является еще одним явным признаком того, что обледенение может быть проблемой.
Обогрев карбюратора
Обледенение карбюратора предотвращается или удаляется за счет использования обогревателя карбюратора . Это система защиты от обледенения, которая направляет горячий воздух в трубку Вентури, чтобы карбюратор не замерзал. Его можно использовать для растапливания уже скопившегося льда, но лучше всего использовать его превентивно в качестве профилактической меры.
Обогрев карбюратора осуществляется через рычаг в кабине. При активации горячий воздух, поступающий в трубку Вентури, будет иметь меньшую плотность, чем окружающий воздух. Следовательно, первоначальное применение приведет к падению оборотов двигателя (или падению давления в коллекторе) и обогащению смеси из-за введения менее плотного воздуха. При использовании для удаления уже образовавшегося льда применение тепла карбюратора сначала приведет к падению оборотов двигателя, прежде чем они снова начнут расти по мере таяния льда и восстановления нормальной работы карбюратора. Смесь, возможно, потребуется обеднить во время нанесения, чтобы восстановить полную мощность.
Атмосферные условия следует контролировать на протяжении всего полета и при подозрении на обледенение включить полный обогрев карбюратора.
Добавить комментарий