Газогенераторные установки для автомобилей: Газогенератор на дровах своими руками для авто – чертежи, устройство

Содержание

Газогенераторные установки — Архангельский клуб владельцев и любителей автомобиля Шевроле Нива

 

Во время Второй мировой войны в Европе почти каждое транспортное средство было переоборудовано на использование дров в качестве топлива.
Автомобили, работающие на древесном газу (также еще называемые газогенераторные автомобили) хоть и теряют свою элегантность во внешнем виде, но очень эффективны, по сравнению со своими бензиновыми собратьями, в плане экологичности и могут равняться с электромобилями.
Рост цен на топливо приводит к возобновлению интереса к этой почти забытой технологии: во всем мире, десятки любителей разъезжают по улицам городов на своих самодельных газогенераторных автомобилях.
Процесс образования газогенераторного газа (синтез газа), при котором органический материал превращается в горючий газ, начинает происходить под воздействием тепла при температуре 1400 ° C .
Первое использование древесины для образования горючего газа начинается с 1870 года, тогда его использовали для уличного освещения и приготовления пищи.


В 1920-х годах, немецкий инженер Жорж Эмбер разработал генератор, вырабатывающий древесный газ для мобильного использования. Получаемый газ очищался, немного охлаждался, а затем подавался в камеру сгорания двигателя автомобиля, при этом, двигатель практически не нуждался в переделке.



С 1931 года началось массовое производство генераторов Эмбера. В конце 1930-х годов, уже около 9000 транспортных средств использовали газогенераторы исключительно в Европе.
Вторая мировая война
Газогенераторные технологии стали обычным явлением во многих европейских странах во время Второй мировой войны, из-за ограничения и дефицита ископаемых и жидких видов топлива. В одной только Германии, к концу войны, около 500.000 автомобилей были дооборудованы газогенераторами для эксплуатации на древесном газу.

Газогенераторные гражданские автомобили времен Второй мировой войны
Было построено около 3000 «заправочных станций», где водители могли запастись дровами. Не только легковые автомобили, но и грузовые автомобили, автобусы, трактора, мотоциклы, корабли и поезда были оснащены газогенераторными установками. Даже некоторые танки были оборудованы газогенераторными установками, хотя для военных целей немцы производили жидкие синтетические топлива (сделанные из дерева или угля).

500.000 газогенераторных гражданских автомобилей к концу войны в Германии
В 1942 (когда технология еще не достигла пика своей популярности), насчитывалось около 73000 газогенераторных автомобилей в Швеции, во Франции 65000, 10000 в Дании, 9000 в Австрии и Норвегии, и почти 8000 в Швейцарии. В Финляндии числилось 43000 газогенератрных машин в 1944 году, из которых 30000 были автобусы и грузовые автомобили, 7000 легковые автомобили, 4000 тракторов и 600 лодок.
Газогенераторные автомобили также появилась в США и в Азии. В Австралии насчитывалось около 72000 газогенераторных автомобилей. В общей сложности более миллиона автомобилей использующих древесный газ находилось в эксплуатации во время Второй мировой войны.

После войны, когда бензин стал вновь доступен, газогенераторные технологии почти мгновенно канули в лету. В начале 1950-х годов, в Западной Германии осталось только около 20000 газогенераторов.
Программа исследований в Швеции
Рост цен на топливо и глобальное потепление привело к возобновлению интереса к дровам, как к непосредственному топливу. Многие независимые инженеры по всему миру занялись переоборудованием стандартных автомобилей на использование древесного газа в качастве автомобильного топлива. Характерно, что большая часть этих современных газогенераторов разрабатывается в Скандинавии.

В 1957 году правительство Швеции создало исследовательскую программу для подготовки к возможности быстрого перехода автомобилей на использование древесного газа, в случае внезапной нехватки нефти. Швеция не имеет запасов нефти, но у нее есть огромные лесные массивы, которые могут использоваться в качестве топлива. Целью этого исследования была разработка улучшенной, стандартизированной установки, которая может быть адаптирована для использования на всех видах транспортных средств. Это исследование поддерживалось производителем автомобилей Volvo. В результате изучения работы автомобилей и тракторов на протяженности 100.000 км пробега, были получены большие теоретические знания и практический опыт.

Некоторые финские любители инженеры использовали эти данные для дальнейшего развития технологии, например Юха Сипиля

Газогенераторная установка вырабатывающая древесный газ, выглядит как большой подогреватель воды. Эту установку можно разместить на прицепе (хотя это затрудняет парковку автомобиля), в багажнике автомобиля (занимает почти все багажное отделение) или на платформе в передней или задней части автомобиля (наиболее популярный вариант в Европе). На американских пикапах, генератор помещается в кузове. Во время Второй мировой войны, некоторые автомобили были оснащены встроенным генератором, полностью скрытым от глаз.
Топливо для газогенератора
Топливо для газогенераторных автомобилей состоит из древесины или щепы (фото слева). Древесный уголь также может быть использован, но это приводит к потере до 50 процентов энергии, содержащейся в оригинальной биомассе. С другой стороны, уголь содержит больше энергии за счет более высокой калорийности, так что спектр топлив может быть разнообразен. В принципе, любой органический материал может быть использован. Во время Второй мировой войны, уголь и торф использовались, но лес был основным видом топлива.
Один из наиболее удачных газогенераторных автомобилей был построен в 2008 году голландцем Джоном. Многие автомобили, оборудованные газогенераторами, имели громоздкую конструкцию и не очень привлекательный вид. Голландская Volvo 240, укомплектована современной газогенераторной системой из нержавеющей стали, и имеет современный элегантный вид.
“Получить древесный газ не так уж трудно”, говорит Джон, намного труднее получить чистый древесный газ. У Джона есть много нареканий на автомобильные газогенераторные установки, так как производимый ими газ содержит много примесей.
Джон из Голландии твердо уверен, что газогенераторные установки вырабатывающие древесный газ намного перспективнее использовать стационарно, например, для отопления помещения и для бытовых нужд, для производства электроэнергии, и для подобных производств. Газогенераторный автомобиль Volvo 240 рассчитан прежде всего для демонстрации возможностей газогенераторной технологии.
Возле автомобиля Джона и возле подобных газогенераторных автомобилей всегда собирается много восхищенного и заинтересованного народа. Тем не менее автомобильные газогенераторные установки для идеалистов и на время кризиса – считает Джон.
Технические возможности
Газогенераторная Volvo 240 достигает максимальной скорости 120 километров в час (75 миль / ч) и может поддерживать крейсерскую скорость 110 км / ч (68 миль / ч). “Топливный бак” может содержать 30 кг (66 фунтов) древесины, этого достаточно для примерно 100 километров пробега (62 миль), что сравнимо с электромобилем.
Если заднее сидение загрузить мешками с древесиной, то дальность пробега увеличивается до 400 километров (250 миль). Опять же, это сравнимо с электромобилем, если пространство для пассажира приносится в жертву для установки дополнительных батарей, как в случае с Tesla Roadster или электромобилем Mini Cooper. (В газогенераторе дополнительно ко всему, периодически нужно брать мешок с древесиной из заднего сидения и высыпать в бак).
Прицепной газогенератор

Существует принципиально другой подход к переоборудованию автомобилей газогенераторными системами. Это способ размещения газгена на прицепе. Такой подход избрал Веса Микконен. Последняя его работа – это газогенераторный Lincoln Continental 1979 Mark V, большой тяжелый американский автомобиль класса купе. Lincoln потребляет 50 кг (110 фунтов) древесины на каждые 100 километров пробега(62 миль) и является значительно менее экономным, чем Volvo Джона. Вес Микконен также переоборудовал Toyota Camry, более экономичный автомобиль.
Этот автомобиль потребляет всего 20 кг (44 фунтов) древесины при таком же пробеге. Однако прицеп остался почти таким же большим, как и сам автомобиль.
Оптимизация электромобилей может происходить за счет уменьшения размеров и облегчения общего веса. С двоюродными братьями газогенераторными автомобилями такой способ не подходит. Хотя со времен Второй мировой войны газогенераторные автомобили стали намного совершеннее. Автомобили военных времен могли проезжать 20 – 50 километров на одной заправке, имели низкие динамические и скоростные характеристики.

Газогенераторный деревянный автомобиль Джоста Конина
«Передвигаться по миру при помощи пилы и топора», – под таким девизом голландец Джост Конин (Joost Conijn) на своем газогенераторном автомобиле с прицепом, совершил двухмесячное путешествие по Европе, абсолютно не беспокоясь о заправочных станциях (которых он не видел в Румынии).
Хотя прицеп в данном автомобиле использовался для других целей, для хранения дополнительного запаса дров, благодаря чему увеличивалось расстояние между «заправками». Интересно то, что Джост использовал древесину не только в качестве топлива автомобиля, но и как строительный материал для самого автомобиля.
В 1990-х годах водород рассматривали в качестве альтернативного топлива будущего. Затем большие надежды возлагались на биотопливо. Позже большое внимание привлекло развитие электрических технологий в автомобилестроении. Если и эта технология не получит дальнейшего продолжения (тому есть объективные предпосылки), тогда наше внимание вновь сможет переключиться на газогенераторные автомобили.
Несмотря на высокое развитие промышленных технологий, использование древесного газа в автомобилях, представляет интерес с экологической точки зрения, по сравнению с другими альтернативными видами топлива. Газификация древесины несколько более эффективна, по сравнения с обычным сжиганием древесины, так как при обычном сжигании теряется до 25 процентов содержащейся энергии. При использовании газогенератора в автомобиле возрастает потребление энергии в 1,5 раза по сравнению с автомобилем работающем на бензиновом топливе (включая потери на предварительный нагрев системы и увеличение веса самой машины).
Если принять к сведению, что необходимая для нужд энергия транспортируется, а затем вырабатывается из нефти то и газификация древесины остается эффективна по сравнению с бензином. Так же следует учитывать, что древесина является возобновляемым источником энергии, а бензин нет.
Преимущества газогенераторных автомобилей
Самое главное преимущество газогенераторных автомобилей заключается в том, что в нем используется возобновляемое топливо без какой-либо предварительной обработки. А на преобразование биомассы в жидкое топливо, такое как этанол или биодизель, может расходоваться энергии (в том числе и СО2) больше, чем содержится в изначальном сырье. В газогенераторном автомобиле для производства топлива энергия не используется, за исключением порезки и рубки древесины.
Газогенераторный автомобиль не нуждается в мощных химических аккумуляторных батареях и это является преимуществом перед электромобилем. Химические аккумуляторы имеют свойство саморазряжаться и нужно не забывать их заряжать перед эксплуатацией. Устройства, вырабатывающие древесный газ являются, как бы, натуральными аккумуляторами. Отсутствует необходимость в высокотехнологичной обработке отработавших и неисправных химических аккумуляторных батарей. Отходами работы газогенераторной установки является зола, которая может быть использована в качестве удобрения.
Правильно сконструированный автомобильный газогенератор значительно меньше засоряет воздушное пространство, чем бензиновый или дизельный автомобиль.
Газификация древесины значительно чище, чем непосредственное сжигание древесины: выбросы в атмосферу сопоставимы с выбросами при сжигании природного газа. При эксплуатации электромобиль не засоряет атмосферу, но позже, для зарядки аккумуляторов нужно приложить энергию, которая, пока что добывается традиционным путем.
Недостатки газогенераторных автомобилей
Несмотря на многие преимущества в эксплуатации газогенераторных автомобилей, следует понимать, что это не самое оптимальное решение. Установка, производящая газ, занимает много места и весит несколько сотен килограммов – и весь этот «завод» приходится возить с собой и на себе. Газовое оборудование имеет большой размер из-за того, что древесный газ имеет низкую удельную энергию. Энергетическая ценность древесного газа составляет около 5,7 МДж / кг, по сравнению с 44 МДж / кг у бензина и 56 МДж / кг у природного газа.

При работе на газогенераторном газе не удается достигнуть скорости и ускорения, как на бензине. Так происходит потому, что древесный газ состоит примерно из 50 процентов азота, 20 процентов окиси углерода, 18 процентов водорода, 8 процентов двуокиси углерода и 4 процента метана. Азот не поддерживает горение, а углеродные соединения снижают горение газа. Из-за высокого содержания азота двигатель получает меньше топлива, что приводит к снижению мощности на 30-50 процентов. Из-за медленного горения газа практически не используются высокие обороты, и снижаются динамические характеристики автомобиля.

Опель Кадет, оснащенный газогенераторной установкой
Автомобили с небольшим объемом двигателя тоже можно оборудовать генераторами древесного газа (например, Opel Kadett на рисунке выше), но все же лучше оснащать газогенераторами большие автомобили с мощными двигателями. На маломощных двигателях, в некоторых ситуациях, наблюдается сильная нехватка мощности и динамики двигателя.
Сама газогенераторная установка может быть изготовлена и меньшего размера для небольшого автомобиля, но это уменьшение не будет пропорциональным размеру автомобиля. Были сконструированы газогенераторы и для мотоциклов, но их габаритные размеры сопоставимы с мотоциклетной коляской. Хотя этот размер значительно меньше, чем устройства для автобуса, грузовика, поезда или корабля.
Удобство использования газогенераторного автомобиля
Еще одна известная проблема газогенераторных автомобилей заключается в том, что они не очень удобны в использовании (хотя и значительно улучшились по сравнению с технологиями, используемыми во время войны). Тем не менее, несмотря на улучшения, современному газогенератору требуется около 10 минут, чтобы выйти на рабочую температуру, поэтому не получится сесть в автомобиль и немедленно уехать.
Кроме того, перед каждой последующей заправкой необходимо извлечь лопаткой золу – отработку предыдущего горения. Образование смол уже не так проблематично, чем это было 70 лет назад, но и сейчас это очень ответственный момент, так как фильтры должны очищаться регулярно и качественно, что требует дополнительного частого обслуживания. В общем, газогенераторный автомобиль требует дополнительных хлопот, полностью отсутствующих в работе бензинового автомобиля.

Высокая концентрация смертельного угарного газа требует дополнительных мер предосторожности и контроля от возможной протечки в трубопроводе. Если установка находится в багажнике, то не следует экономить на датчике СО в салоне автомобиля. Нельзя запускать газогенераторную систему в помещении (гараже), так как при запуске и выходе на рабочий режим должно быть открытое пламя
Массовое производство газогенераторных автомобилей

Газогенераторный Volkswagen Beetle, выпускаемый на заводе
Все транспортные средств, описанные выше, построены инженерами любителями. Можно предположить, если бы было решено выпускать газогенераторные автомобили профессионально в заводских условиях, то, скорее всего, многие недостатки были бы устранены, а преимуществ стало бы больше. Такие автомобили могли бы выглядеть более привлекательно.


Например, в автомобилях Volkswagen, выпускаемых в заводских условиях во время Второй мировой войны, весь газогенераторный механизм был скрыт под капотом. С передней стороны в капоте находился только люк для загрузки дров. Все остальные части установки не были видны.
Еще один вариант газогенераторного автомобиля выпускаемого в заводских условиях – Mercedes-Benz. Как видно на фотографии ниже, весь механизм газогенератора скрыт под капотом багажника.

Газогенераторный Mercedes-Benz 230, выпускаемый на заводе
Вырубка леса
К сожалению, увеличение использования древесного газа и биотоплива может привести к образованию новой проблемы. И массовое производство газогенераторных автомобилей может усугубить эту проблему. Если начать значительно увеличивать количество автомобилей, использующих древесный газ или биотопливо, то в таком же количестве начнут снижаться запасы деревьев, а сельскохозяйственные земли будут принесены в жертву для выращивания культур, перерабатываемых на биотопливо, а это может привести к образованию голода. Использование газогенераторной техники во Франции во время Второй мировой войны стало причиной резкого уменьшения лесных запасов. Так же и другие технологии производства биотоплива приводят к уменьшению выращивания полезных для человека растений.
Хотя, наличие газогенераторного автомобиля может привести к более умеренному его использованию:
прогревать в течении 10 минут газогенератор или использовать велосипед для перемещения в магазин за продуктами – скорее всего выбор будет сделан в пользу последнего;
рубить в течении 3-х часов дрова для поездки на пляж или воспользоваться поездом – вероятно выбор будет в пользу последнего.

На запуск и разогрев газогенератора нужно потратить минимум 10 минут времени
Как бы там ни было, газогенераторные автомобили не могут равняться с бензиновыми и дизельными автомобилями. Только глобальная нехватка нефти или очень большое удорожание ее сможет заставить нас пересесть на газогенераторный автомобиль.
По материалам: sintezgaz. org.ua

 

Типы газогенераторов

 

 

Газогенераторы прямого процесса газификации
Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.
В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.
Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.
Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С.
В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя.
Подача водяного пара в газогенератор должна производиться пропорционально количеству сжигаемого в газогенераторе топлива. Существовало несколько способов регулировки подачи пара в камеру газификации:
– механический способ, когда вода подавалась в испаритель газогенератора с помощью насоса, приводимого в действие от двигателя и имевшего перепускной кран, который был связан с дроссельной заслонкой. Таким образом, количество воды, подаваемой в газогенератор, изменялось в зависимости от числа оборотов и нагрузки двигателя;
– термический способ, когда в испарителе, расположенном вблизи зоны горения, поддерживался с помощью поплавкового устройства необходимый уровень воды, а количество образующегося пара изменялось в зависимости от нагрева испарителя, то есть в зависимости от температуры в зоне горения;
– гидравлический способ, когда расход воды регулировался иглой, перекрывавшей сечение жиклера, и связанной с мембраной, на которую действовала разность давлений до и после диафрагмы, установленной в газопроводе, соединявшим газогенераторную установку с двигателем;
– пневматический способ, при котором вода подавалась в испаритель газогенератора вместе с воздухом, засасываемым через обычный карбюратор.

 

 

В конструкции газогенератора ЦНИИАТ-АГ-2 был использован принцип центрального подвода воздуха и центрального отбора газа. Газогенератор состоял из корпуса, конической камеры газификации и зольника. Верхняя часть корпуса служила бункером для топлива и имела цилиндрический бак для воды. Трубка для подачи воды располагалась внутри газогенератора, бак подогревался теплом сгорающего топлива. Это обеспечивало надежную работу установки в зимнее время. Камера газификации представляла собой горловину конической формы, которая снизу была окружена рубашкой, заполненной водой для образования водяного пара. Необходимый уровень воды в рубашке поддерживался при помощи поплавкового устройства. Количество образовавшегося пара изменялось в зависимости от теплового режима газогенератора.

 

 

Воздух, засасываемый в газогенератор через подогреватель, смешивался с паром и поступал в камеру газификации через щель, образованную рубашкой и поворотной плитой. При вращении плиты рукояткой, расположенной снаружи под днищем газогенератора, ребра, имеющиеся на плите, срезали шлак и сбрасывали его в зольник.
Установки прямого процесса газификации не получили распространения, так как, во-первых, были непригодны для газификации самого распространенного твердого топлива – древесины, а во-вторых, потому что приспособления, необходимые для хранения, дозировки и испарения воды существенно усложняли конструкцию газогенератора.

 

 

Газогенераторы обращенного (опрокинутого) процесса газификации.
Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля.
В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.
Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.

 

 

Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы). Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7. Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора. Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10. Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки. На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.
Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации. Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.

 

 

Камера газогенератора НАТИ-Г-15), изготовленная из 12-миллиметровой листовой стали, имела вид усеченного конуса. В средней части газогенератора была смонтирована воздухоподводящая фурма. Она представляла собой чугунную отливку грушевидной формы. Внутри отливки – лабиринт для подвода воздуха в газогенератор. В нижней части камеры газификации располагалась колосниковая решетка, которую вынимали через зольниковый люк при чистке и разгрузке газогенератора. Образовавшийся в камере газификации газ проходил сквозь колосниковую решетку, поднимался вверх между корпусом газогенератора и камерой и отсасывался через газоотборный патрубок. Газогенератор был предназначен для работы на крупном древесном угле, с размером кусков 20 мм – 40 мм.
Газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках, получили наибольшее распространение.

 

 

Газогенераторы поперечного (горизонтального) процесса газификации.
В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива.
Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.

 

 

Газогенератор представлял собой цилиндрический бункер, нижняя часть которого, выполненная из листовой стали толщиной 6 – 8 мм, образовывала камеру газификации. В верхней части бункера был расположен люк для загрузки топлива.

 

 

Скорость дутья определялась проходным сечением воздухоподводящей фурмы. Фурма служила наиболее ответственной и сложной деталью газогенератора. Она была глубоко погружена в слой топлива и находилась в зоне высокой температуры – непосредственно около носка фурмы температура достигает 1200 – 1300 С. Высокие температурные нагрузки требовали применять водяное охлаждение фурмы. Конструктивно охлаждение фурмы являлось частью системы водяного охлаждения двигателя, или представляло собой самостоятельную систему, питаемую от отдельного бачка.

 

 

Воздухоподводящая фурма газогенератора НАТИ-Г-21 состояла из бронзового корпуса 1 и медных трубок 2 и 3 диаметром 20 и 40 мм, образующих водяную рубашку. Тыльная часть наружной трубки 3 была приварена к корпусу 1 фурмы, а носовая часть обварена медью и соединялась с внутренней трубкой 2, свободный конец которой при нагревании фурмы мог перемещаться в сальнике 4. Затяжкой накидной гайки 5 обеспечивалась герметичность водяной рубашки. Вода подавалась через нижний штуцер корпуса фурмы и после прохождения водяной рубашки отводилась через верхний штуцер. Для того чтобы поток воды достиг носка фурмы, к наружной поверхности внутренней трубки параллельно ее оси были приварены две перегородки, направлявшие поток воды к носу фурмы.

 

 

Другой важной деталью газогенераторов поперечного процесса газификации служила газоотборная решетка. Газоотборную решетку изготавливали из простой углеродистой или легированной стали толщиной 8 – 12 мм. Ее штамповали в виде изогнутого листа с отбортованными краями или изготавливали в виде плоской пластины. В последнем случае для монтажа решетки в газогенераторе предусматривали специальное гнездо. Отверстия в решетке для прохода газа делали круглыми, диаметром 10 – 12 мм, с раззенковкой со стороны выхода газа. Иногда отверстия делали овальными; в этом случае большая ось овала располагалась горизонтально, что позволяло увеличить проходное сечение без опасности проскакивания за решетку кусков угля (при наклонном расположении решетки).
Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.

 

Принцип работы автомобильной газогенераторной установки


 

 

Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.

Охлаждение и грубая очистка газа

 

На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.


 

 

Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.

 

 

В качестве простейшего очистителя использовался циклон. Газ поступал в очиститель через патрубок 1, распологавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3. Ударившись о стенки, частицы падали в пылесборник 6. Отражатель 4 препятствовал возвращению частиц в газовый поток. Очищенный газ выходил из циклона через газоотборный патрубок 2. Удаление осадка осуществлялось через люк 5.

 

 

Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя. Грубый очиститель-охладитель состоял из металлического кожуха 1, снабженного съемной крышкой 2. Внутри кожуха были установлены пластины 3 с большим количеством мелких отверстий, расположенных в шахматном порядке. Газ, проходя через отверстия пластин, менял скорость и направление, а частицы, ударяясь о стенки, оседали на них или падали вниз.

 

 

Грубые охладители-очистители последовательно соединяли в батареи из нескольких секций, причем каждая последующая секция имела большее количество пластин. Диаметр отверстий в пластинах от секции к секции уменьшался (РИСУНОК 5Г).

 

Фильтры тонкой очистки


 

 

Для тонкой очистки газа чаще всего применяли очистители с кольцами. Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали. Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц. Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя. Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса. Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.

 

 

Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.

Вентилятор розжига


 

 

В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод.
Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.

 

Смеситель


 

 

Образование горючей смеси из генераторного газа и воздуха происходило в смесителе. Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха. Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха. Эжекционные смесители б и в различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.
Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.

 

 

Методы уменьшения потерь мощности двигателей газогенераторных автомобилей

Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки.
Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.
 

Эксплуатация автомобилей с газогенераторными установками

Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях.
Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке.
Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель.
При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» – стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель. Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя. При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя.
В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок.
Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра.
Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.

Оригинал статьи: http://wiki.zr.ru/%c3%e0%e7%ee%e3%e5%ed%e5%f0%e0%f2%ee%f0

 

Автомобили работавшие на дровах – Журнал «АВТОТРАК»

Использование газа в качестве топлива для ДВС началось задолго до появления бензина. К примеру, читаем у Жюль Верна: «…он прикрутил газовый рожок…» Горел в этом осветительном приборе, конечно же, не природный, а светильный газ, продукт сухой перегонки твердого топлива, получавшийся в газовых генераторах. На нем же работали первые двигатели внутреннего сгорания, в ту пору еще стационарные. Правда, мобильные газогенераторы удалось создать только в период между мировыми войнами, да и вырабатываемый ими газ по составу заметно отличался от светильного. Но в качестве топлива годился.

Этот газ каждый из нас неоднократно видел. Если в костер подбросить много дров, то из него начинает идти обильный белесый дым. Это он и есть. Когда костер разгорается, дым исчезает в пламени – газ сгорает. По составу он представляет собой довольно сложную смесь, основу которой составляют окись углерода, водород, метан и водяной пар. Понятно, что в том виде, в котором светильный газ образуется в костре, он не пригоден в качестве моторного топлива, в первую очередь из-за сильной загрязненности твердыми частицами. Газогенераторная установка готовит намного более чистый и качественный продукт.

В нашей стране в начале двадцатых проводились конкурсные испытания газогенераторных автомобилей, а первым среди наших соотечественников установил генератор на автомобиль ленинградский профессор В. С. Наумов в 1927 г. Научный автотракторный институт (НАТИ) начал заниматься автомобильными газогенераторами в 1928 г., проводя опыты с иностранными моделями Пип и Имберт-Дитрих. 5 марта 1930 г. решением Президиума ВСНХ тракторный отдел ВИСХОМа и газогенераторная лаборатория института древесины и орглеса переводятся в НАМИ. 25 марта в институте из подотдела создается газогенераторный отдел. Разворачиваются работы по применению твердого топлива для автотракторных двигателей, ведется проектирование, постройка и испытания газогенераторных установок для речных катеров и других нужд народного хозяйства.

Первый построенный газогенератор НАТИ-1 работал на обычных дровах. В 1932 г. изготовлена установка НАТИ-3, созданная в тракторном отделе и предназначенная для моторного катера с двигателем ХТЗ или СТЗ. Тогда же появилась и первая автомобильная установка. Она была создана при поддержке общества Автодор. Установка называлась «Автодор-П» и была сконструирована инженерами. И. Мезиным при участии активистов-автодоровцев инженера НАТИ А. Пельцера и Друяна. «Автодор-П» представляла собой газогенератор цельнометаллической конструкции с фурменной подачей воздуха по периферии топливника. Смеситель установки целиком заимствован с НАТИ-3.

По типу «Автодор-П» С. Мезин спроектировал в НАТИ две установки: НАТИ-11 для ГАЗ-АА и НАТИ-10 для ЗИС-5. После испытаний в начале 1936 г. НАТИ-11 была передана для серийного производства заводу «Свет шахтера», выпускавшему до этого шахтерские лампы.

Приобретенный в этой работе опыт позволил создать более совершенные конструкции. Одной из них стала установка НАТИ-Г14, созданная под руководством С.Г. Коссова. Ее серийное производство под руководством инженера НАТИ Н.Г. Юдашкина было налажено на Горьковском автозаводе для автомобиля ГАЗ-42. Он же ранее разработал и организовал производство газовой версии двигателя ГАЗ-А. В проект газогенераторной установки был внесен ряд изменений с учетом технологий ГАЗа, оборудование которого, рассчитанное на массовое производство, резко отличается от оборудования завода «Комета», где эти установки выпускались ранше. С 1939 по 1946 г. было изготовлено 33840 ГАЗ-42.

В 1936 г. была выпущена партия автомобилей ЗИС-13. Их газогенераторные установки отличались размерами и конструкцией отдельных агрегатов, их размещением на шасси и количеством секций грубых очистителей-охладителей. Так, камера сгорания изготавливалась из жаропрочной хромоникелевой стали, но никель в ту пору импортировался и был дорог. ЗИС-13 отличался 12-вольтовой электропроводкой вместо стандартных 6 В. Повышенное напряжение потребовалось в связи с увеличением мощности стартера из-за большей степени сжатия газового двигателя и наличия мощной воздуходувки. В конце 1938 г. стали выпускаться газогенераторные машины ЗИС-21.

Схема газогенератора проста. Загруженное в газогенератор топливо поджигается через воздушный клапан при помощи факела. Воздух, необходимый для газификации, засасывается в камеру через фурменные отверстия благодаря разрежению, создаваемому всасывающим действием двигателя. Причем его количество должно быть недостаточно для полного сгорания топлива. При этом углерод топлива соединяется с кислородом воздуха, образуя углекислый газ (СО2) и окись углерода (СО). Далее они попадают в зону восстановления, где проходит через слой раскаленного угля, лежащего на колосниковое решетке. В результате негорючий СО2 превращается в горючий СО. Входящий в состав топлива водород частично соединяется с кислородом, образуя воду, которая присоединяется к влаге топлива, а остальной выделяется в чистом виде. Под влиянием высоких температур в камере газификации часть влаги соединяется с углеродом, образуя окись углерода и водород. Окись углерода вместе с ранее образованной и полученной в результате восстановления углекислого газа переходит в состав генераторного газа. Водород же, полученный в результате разложения воды, суммируется со свободным водородом, причем часть этого водорода переходит в состав генераторного газа, а другая часть вступает в химическую реакцию с углеродом топлива, образуя метан. Теоретически весь кислород воздуха должен израсходоваться при газификации, однако в действительности часть его сохраняется и переходит в состав генераторного газа. Вода, не разложившаяся при газификации, переходит в генераторный газ в виде пара.

В слое топлива, находящегося непосредственно над зоной горения, происходит процесс сухой перегонки топлива, т. е. нагрев без доступа воздуха. Продуктами сухой перегонки являются древесный уголь или кокс, а также летучие вещества, смолы и влага, выходящие в газо- и парообразном состоянии. Все продукты сухой перегонки в описанном типе генератора целиком проходят через зону горения и восстановления, где подвергаются процессам газификации, несколько более сложным, чем описано, но дающим те же основные продукты. Над зоной сухой перегонки находится зона подсушки, где происходит высыхание топлива. При выходе из генератора газ имеет высокую температуру и засорен золой и частицами угля. В таком виде он не может использоваться в двигателе и перед поступлением в цилиндры должен быть очищен и охлажден.

Топливом для газогенераторов могут служить дрова, торф, бурый каменный и древесный уголь, антрацит, брикеты из растительных отходов и т. п. Все топлива разделяются на два класса: битуминозные, или с высоким содержанием смол и летучих соединений (дрова, торф, бурый уголь, брикеты из соломы и др.), и небитуминозные (древесный уголь, каменноугольный кокс, антрацит и др.). Двигатель внутреннего сгорания может работать только на бессмольном газе, но все легко доступные топлива – дрова, торф, бурый уголь образуют смолы, к тому же каждое топливо имеет свои особенности. Все это ставит перед конструкторами трудноразрешимые задачи при кажущейся простоте и доступности процесса.

По удобству пользования и другим эксплуатационным параметрам древесина является одним из самых заманчивых видов топлива, причем наиболее подходят твердые породы – дуб, бук, береза и др., обеспечивающие получение наиболее прочного древесного угля. Применение мягких пород менее желательно, поскольку они дают большее количество твердых частиц, забивающих агрегаты очистки и проходы для газа. На процесс образования газа сильно влияют размеры и влажность древесных чурок.
Свежесрубленное дерево не годится качестве газогенераторного топлива из-за высокой влажности. Поэтому древесину предварительно сушат. Естественная сушка на открытом воздухе идет очень медленно, и лишь через полтора-два года влажность снижается до 15–20%, приемлемых для газификации. Газогенераторная установка НАМИ-Г78 позволяла использовать чурки с повышенной до 40% влажностью, для чего на двигатель автомобиля устанавливалась специальная воздуходувка. Мощность двигателя при этом снижалась с 46 до 36 л. с.

Торф по свойствам наиболее близок к древесине. но имеет большую зольность, менее прочен и легче. Малозольный торф может использоваться в газогенераторах, предназначенных для работы на древесных чурках. Торф с более высоким образованием золы, как и бурый уголь, требуют особой конструкции камеры сгорания. Кроме этого, высокая зольность обуславливает постепенное снижение мощности двигателя в процессе работы. Газ, получаемый из торфа и бурого угля, содержит также повышенное количество смолы, что нужно иметь в виду при обслуживании установки и двигателя. Весьма нежелательной примесью к бурому углю является сера, которая попадает в газ. В результате ее взаимодействия с конденсатом образуется серная кислота, разрушающая металлические детали установки и двигателя.

Высокая зольность торфа и бурого угля и обильное накопление шлака при газификации этих топлив вынуждают иметь для них камеру газификации большего размера, без горловины или других переходов. Это требование противоречит другим требованиям. Однако специалистам НАТИ (НАМИ) удалось найти удовлетворительное разрешение и для этого противоречия.

Обычно древесный уголь употреблялся только для розжига основного топлива в газогенераторе при первоначальном пуске. Он является очень хорошим топливом, но его использование в обычных установках недопустимо, так как возникают перегрев газогенератора и прогары. Для него НАТИ разработал установки Г21 и Г23, для ГАЗ-43 и ЗИС-31 соответственно. Эти установки проще и легче работающих на чурках – масса НАТИ-Г21 составляла 250 кг, а НАТИ-Г23-310 кг. Они расходовали примерно в полтора раза меньше по массе топлива, их розжиг происходил за 3–4 мин. Однако очистку их газогенераторов, а также очистителя-охладителя приходилось делать через каждые 250 км пробега, в то время как у древесно-чурочных газогенераторов через каждые 1000 км.

В марте 1939 г. XVII съезд ВКП(б) поставил перед машиностроителями задачу: «Перевести на газогенератор все машины на лесозаготовках, а также значительную часть тракторного парка сельского хозяйства и автомобильного парка». Военные операции съедали основную массу производимого в стране топлива. Только в боевых действиях против Финляндии было задействовано около 100 тыс. автомобилей. Тем временем по выпуску грузовиков и мощных гусеничных тракторов СССР вышел на первое место в Европе. Экономику страны постоянно лихорадило, топлива для автотранспорта катастрофически не хватало. Война лишь довела ситуацию до логического конца.

В военные годы ЗИС-21 и ГАЗ-42 эксплуатировались не только в тылу, но и на фронтах. В частности, половина транспортных автомобилей блокадного Ленинграда, Ленинградского фронта и Краснознаменного Балтийского флота была оснащена газогенераторными установками. Для установки на обычные грузовики были разработаны установки НАТИ-Г69 для ЗИС-5 и НАТИ-Г59 для ГАЗ-АА. К концу войны в СССР эксплуатировалось 200 тыс. газогенераторных автомобилей, тракторов, передвижных электростанций, катеров, мотовозов и других установок. Во время Второй мировой войны газогенераторные автомобили получили также распространение в Германии, Франции, Великобритании, Швеции, Финляндии, Китае, Японии, Австралии, Индии.

Эксплуатация газогенераторных машин осложнялась нехваткой кондиционного топлива из-за отсутствии достаточного количества топливозаготовительных баз, хотя решение об их строительстве было принято еще до войны. Вдобавок они нередко поставляли чурки повышенной влажности, что вело к выходу из строя дорогостоящего газогенераторного оборудования.

После войны Уральский автомобильный завод в 1946–1952 гг. выпускал модернизированный УралЗИС-21А, а с 1952 г. УралЗИС-352 с установкой НАМИ-Г78. С 1953 г. Минский тракторный завод выпускал трелевочный трактор КТ-352Т. Это были последние серийные газогенераторы.

Автомобиль на дровах или газогенераторные автомобили, можно ли сделать своими руками

История создания и развития, примеры авто на дровах

Несмотря на медленное продвижение темы газогенераторных машин, история таких разработок весьма богатая. Так, еще в 1823 году российский изобретатель Овцын И.И. разработал аппарат для перегонки древесины. В его основу легла самая обычная «термолампа».

Главной особенностью установки стало применение в ней главных продуктов пиролиза — светильного газа, уксусной кислоты и дегтя, а также древесного угля.

Почти через сорок лет (в 1860 году) свой вклад в науку сделал Этьен Ленуар — бельгийский официант с инженерными «наклонностями». Именно он первым приобрел патент на ДВС, функционирующий на светильном газе.

Но он занимался не только этими разработками.

Еще через два года установка новоиспеченного гения появилась на 8-местном открытом омнибусе.

Но в 1878 году, когда публике был представлен более мощный 4-тактный двигатель на газе Николаса Отто, разработка Этьена Ленуара быстро забылась. При этом у нового устройства был более высокий КПД: 16% у Отто против 5% у Ленуара.

Еще через два десятка лет, в 1883 году (от 1860 года), появилась новая концепция сочетания обычного ДВС и газогенератора.

Английскому ученому Э. Даусону удалось объединить два устройства в одной коробке.

Получившийся аппарат можно было смело устанавливать на любую технику и спокойно эксплуатировать. Со временем разработка Э. Даусона получила название «газа Даусона».

В 1891 году отличился Яковлев Евгений (лейтенант Российского флота). Ему удалось выстроить целый завод по производству керосиновых и газовых моторов. Местом для строительства стал Санкт-Петербург.

Со временем завод прекратил существований из-за невозможности устоять в конкуренции с бензиновыми и дизельными моторами.

1900-й можно смело назвать годом выпуска первого газогенераторного автомобиля, использующего древесный уголь и дерево в виде топлива.

Аппарат был разработан во Франции Фредериком Уинслоу Тейлором, а патент удалось получить немного позже (в 1901 году).

В последующем появлялись все новые и более интересные разработки в данной сфере. Так, в 1919 году Георг Имберт (инженер французского происхождения) разработал газогенератор обращенного типа.

Уже в 1921 году появились первые автомобили с моторами, работающими на данном принципе. Именно тогда возникли предположения о вероятной конкуренции газогенераторного авто с дизельными или бензиновыми моторами.

Со временем отличилась и Германия, где в период войны получили распространение не только дровяные газогенераторы, но и устройства, способные работать на специальных брикетах, состоящих из буроугольной пыли и крошки.

Первые грузовые авто с газогенераторами были весьма медлительными — им едва ли удавалось достичь скорости в 20 километров в час.

Несмотря на это, к 1938 году популярность газогенераторных авто была настолько большой, что общее число таких машин насчитывалось около девяти тысяч.

Еще через три года (к 1941 году) их число возросло еще в пятьдесят раз. К примеру, в той же Германии количество машин «на дровах» выросло до 300 тысяч экземпляров.

Старался не отставать и Советский Союз. Здесь первые испытания газогенераторных авто прошло в 1928 году. В машине был задействован мотор Наумова и шасси Фиат-15.

Еще через шесть лет был организован первый большой пробег машин с газогенераторными моторами от Москвы до Ленинграда и обратно.

В «забеге» принимали участие автомобили ЗИС-5 и ГАЗ-АА. Успех мероприятия послужил принятию в 1936 году специального постановления СНК СССР о разработке газогенераторных тракторов и машин.

ГАЗ – АА.

ЗИС – 5.

Первая партия новых газогенераторных машин появилась на дорогах СССР в 1936 году.

Производство осуществлялось на двух заводах — Горьковском (ГАЗ-42) и на ЗИС (заводе имени Сталина).

Спустя пять лет был налажен выпуск газогенераторных моторов для тракторов и машин ЗИС.

К недостаткам силовых узлов можно было отнести множественные заводские дефекты, высокую скорость износа металла, минимальную мощность и так далее.

С другой стороны, газогенераторные установки очень помогли в войну и активно применялись в тылу.

Основные особенности

Газогенераторный двигатель имеет несколько неоспоримых положительных особенностей. Во-первых, топливо для устройства очень дешевое. Во-вторых, во время эксплуатации прибора появляется зола, которую можно использовать в качестве удобрения, к примеру. В-третьих, автомобилю не потребуется установка мощных химических аккумуляторов.

Газогенераторные двигатели доказали свое право на существование уже очень давно. На сегодняшний день их показатели, конечно же, сильно уступают новым моделям, работающим на бензине. Однако для большинства рядовых автолюбителей вполне могут подойти. Газогенераторная установка позволит развить скорость до 100 км/ч, приблизительный максимальный пробег составит около 100 км. Чтобы повысить этот параметр, придется возить на заднем сиденье дополнительные мешки с дровами и периодически вручную добавлять «топливо» в бак.

Как работает устройство

Принцип работы газогенератора — синтез газа. Это процесс, в ходе которого, горючий газ будет образовываться при сгорании органического материала. Для того чтобы запустить такой процесс, необходимо достичь нужной температуры. Синтез газа начинается при достижении показателя в 1400 градусов по Цельсию. В качестве топлива для газогенераторного двигателя могут использоваться торф, брикеты с углем и некоторые другие материалы. Однако, как показала практика, наиболее распространенным и удобным материалом в качестве топлива выступает древесина. Хотя здесь стоит отметить, что дрова обладают одним недостатком — уменьшение заряда рабочей смеси. Вследствие этого несколько понижается и мощность установки.

Можно добавить, что двигатель на дровах такого типа обычно используется с уже установленным ДВС.

Как создавались газогенераторные установки?

Француз Филипп Лебон выделил светильный газ в конце 18 века. В 1801 году он получил патент на газовый двигатель, но построить его не смог по причине насильственной смерти. Совершенствованием конструкции генератора и двигателя занимались многие европейские инженеры в течение 19 века. Первым во Франции построил газогенераторный автомобиль инженер Тейлор в 1900 году.

Впоследствии газогенераторные автомобили прошли два этапа повышенного спроса, приведшего к тому, что наличие таких автомобилей в мире стало исчисляться сотнями тысяч. Активная работа по совершенствованию газогенераторных установок, и созданию автомобилей с их применением, велась в СССР различными заводами и институтами. Результатом этой работы стало появление наиболее совершенных, по меркам того времени, установок.

Правительственное задание предписывало Горьковскому автозаводу в 39-м году выпустить 10 тысяч грузовиков с газогенераторной установкой модели НАТИ Г-14, которая могла работать на древесном топливе. Московскому ЗИС нужно было выпустить 8 тысяч газогенераторных ЗИС-5 с установкой ЗИС-21. Нехватка бензина вынудила строить газовые машины, названные народом «газгены».

В газогенераторе одновременно образуются горючие газы, к которым относятся окись углерода, водород и метан, не горючие — кислород и азот, а так же водяные пары. Такой состав снижает концентрацию горючих ингредиентов в смеси и её калорийность. Для повышения концентрации горючих газов требуется охлаждение смеси газов и отделение воды, что производится в соответствующих отделах установки и делает её громоздкой.

Конструкция установки

Чтобы успешно эксплуатировать авто на дровах или сжигать полученное топливо в котле, одного газогенератора недостаточно. Дело в том, что помимо балластных газов, самодельное горючее содержит летучие примеси и смолы, проще говоря, — дым и сажу. Ни автомобильный мотор, ни горелочное устройство котла не рассчитано на такое топливо и быстро выйдет из строя. Поэтому была придумана система фильтрования, входящая в состав газогенераторной установки и включающая 3 дополнительных агрегата:

  • фильтр грубой очистки – циклон;
  • радиатор – охладитель;
  • фильтр тонкой очистки.

Очередность размещения этих элементов показана на технологической схеме:

Циклон для газогенератора представляет собой вертикальный цилиндр с двумя патрубками и конусом на конце, как показано на чертеже. Загрязненная газовая смесь, попадая внутрь него, движется по кругу на высокой скорости, за счет чего крупные и средние частицы золы отбрасываются на стенки центробежной силой и выводятся через отверстие в конусе.


Схема работы циклона, который очищает силовой газ от примесей

Чем выше температура газа, тем меньше его плотность. Это значит, что горючее на выходе из газгена нельзя использовать в ДВС без предварительного охлаждения, иначе оно просто не воспламенится в цилиндрах. Поэтому в промышленных газогенераторных установках сразу после циклона ставится воздушный либо водяной теплообменник, а следом – компрессор, нагнетающий охлажденную газовую смесь в распределительную емкость.

В конце технологической цепочки стоит фильтр тонкой очистки, удаляющий из полученного топлива мелкие частицы сажи и золы. Пример такого агрегата – так называемый скруббер, в котором газы очищаются за счет продувания через воду. Теперь, когда мы разобрались с технологией производства горючего, можно сделать собственную недорогую установку, способную обеспечить работу двигателя внутреннего сгорания на дровах.


Самодельный газген, изготовленный заграничными коллегами

Технические показатели

Если стоит выбор, к примеру, между покупкой автомобиля с традиционным двигателем или с газогенератором, то нужно подробно остановиться на рассмотрении технических данных второго варианта.

Масса двигателя на дровах достаточно большая, из-за чего теряется некоторая часть маневренности. Этот недостаток становится опасным, если развивать большую скорость. По этой причине доводить автомобиль даже до 100 км/ч не слишком разумное решение — придется ездить медленнее. Есть еще несколько важных технических данных такого оборудования.

Газовый двигатель, работающий на дровах, обладает большей степенью сжатия, чем грузовые бензиновые двигатели. Что касается мощности, то газогенератор, естественно, проигрывает бензиновому мотору.

Последнее отличие не в пользу газовой модели — это грузоподъемность, в которой он также проигрывает автомобилю с бензиновым двигателем.

Здесь еще важно отметить, что древесный газ характеризуется низкой энергетической ценностью, если сравнивать его с природным. Авто на дровах будет неизбежно терять в динамических свойствах, что также следует учитывать водителю такого транспортного средства.

Некоторые предпочитают установку объемного газогенератора осуществлять на прицеп, а не на сам автомобиль. В таком случае и быстро разогнаться не получится, и маневрировать особо не выйдет. Прицеп будет являться своеобразным ограничителем.

Изготовление газгена для автомобиля

Перед тем как сделать работоспособный газогенератор для автомобиля, предлагаем ознакомиться с некоторыми рекомендациями:

  1. Организовать подачу силового газа в современном авто с инжектором – задача непростая. Придется менять настройки контроллера (прошивку), иначе мотор на древесном топливе работать не будет. Нужна машина со старой системой топливоподачи – карбюратором.
  2. Чем больше мощность и рабочий объем двигателя, тем выше производительность должна быть у газогенератора. Соответственно, он вырастет в размерах.
  3. Чтобы уместить установку в багажник легкового авто, потребуется вырезать часть днища. Если вы не хотите затрагивать кузов, то сразу планируйте ставить дровяной генератор с фильтрами и охладителем на прицеп.
  4. Для изготовления камеры газификации, где температура превышает 1000 °С, применяйте низкоуглеродистую толстую сталь (4—5 мм).
  5. Чтобы уменьшить содержание смол в газовой смеси, делайте камеру с горловиной, как это показано на чертеже.

Важный момент. Не стоит увеличивать диаметр камеры газификации (на чертеже он равен 340 мм) с целью добиться большей производительности. Прирост получится мизерный, а качество переработки древесины ухудшится. А вот высоту 183 см выдерживать не обязательно, разве что вы поставите агрегат на прицеп или на раму грузовика. Топливный бункер и зольник можно укоротить.

Для сборки внутренней части автомобильного газогенератора (бункера) сгодится старый пропановый баллон, ресивер от грузовика КаМАЗ или толстостенная труба. Учитывая, что диаметр стального сосуда равен 300 мм, остальные размеры нужно пропорционально уменьшить. Исключение – камера газификации, ее минимальный диаметр составляет 140 мм. На кожух и крышку генератора пойдет металл толщиной 1.5 мм. Последняя уплотняется графитно-асбестовым шнуром.


Варианты охладителей горючей смеси из автомобильного радиатора и батареи отопления

Сопутствующие агрегаты – фильтры и охладители – делаются так:

  1. Циклон сварите из отработавшего огнетушителя или отрезка трубы диаметром 10 см, как это изображено на чертеже. Входной патрубок приделайте сбоку, выпускной – сверху.
  2. Охладитель силового газа лучше сделать из стальных труб в виде змеевика. Есть и другие варианты: использование старых конвекторов, батарей отопления и радиаторов.
  3. Фильтр тонкой очистки изготовьте из любой цилиндрической емкости (например, бочки), наполненной базальтовым волокном.

Более детальную информацию о сборке газогенератора своими силами вы получите, посмотрев видео:

Для розжига и запуска газгена вам потребуется вентилятор в виде улитки, устанавливаемый в моторном отсеке (для испытаний сойдет и бытовой пылесос). К нему требование простое: детали, соприкасающиеся с газовой смесью, должны быть металлическими. Топливная магистраль, ведущая к карбюратору, прокладывается под днищем авто и выполняется из стальной трубы.

Для справки. Если вместо дров использовать древесный уголь, то примесей на выходе газогенератора будет значительно меньше, что хорошо для двигателя. Такое топливо выжигается из дерева по простой технологии – в закрытой бочке или яме.


Бункер для древесного угля помещается в багажник «Жигулей»

Типы газогенераторов

Для разных видов топлива были разработаны газогенераторы соответствующих типов:
— газогенераторы прямого процесса газификации;
— газогенераторы обращенного (обратного, или «опрокинутого») процесса газификации;
— газогенераторы поперечного (горизонтального) процесса газификации.

Газогенераторы прямого процесса газификации

Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.

В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.

Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.

Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С.

В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя.

Газогенераторы обращенного (опрокинутого) процесса газификации.

Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля.

В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.

Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.

Газогенераторы поперечного (горизонтального) процесса газификации.

В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива.

Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.

Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.

Наибольшее распространение получили газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках.
Примером такого газогененератора может служить газогенератор устанавливавшийся на ГАЗ-42

Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы).
Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7.

Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора.

Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10.
Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки.

На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.

Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации.
Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.

Функциональные зоны газогенератора

Все внутреннее пространство агрегата можно условно поделить на четыре отдела:

  • Зона просушки. Своего рода камера подготовки топлива, в которой те же дрова обретают оптимальную температуру без излишков влаги. Обычно температурный режим на этом участке составляет 150-200 °С.
  • Зона сухой перегонки. Еще один этап подготовки твердотельного топлива, но в условиях более высокого температурного режима до 500 °С. На этой стадии газогенераторная установка обугливает дрова с целью выведения из них смол, кислот и других нежелательных веществ.
  • Зона горения. Этот отдел размещается на уровне подключения воздушных каналов, по которым направляется воздух для поддержания стабильности горения. Конструкционно это обычная камера сжигания, которая присутствует во всех твердотопливных котлах. Средняя температура в ней варьируется от 1100 до 1300 °С.
  • Зона восстановления. Участок между колосниковой решеткой и камерой сгорания. По аналогии с современными пиролизными котлами можно представить этот отдел как место повторного сгорания. Сюда из зоны сжигания попадает раскаленный уголь, который может выниматься или тут же утилизироваться.

Принцип работы автомобильной газогенераторной установки

Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.

Охлаждение и грубая очистка газа

На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.

Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.

В качестве простейшего очистителя использовался циклон. Газ поступал в очиститель через патрубок 1, распологавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3. Ударившись о стенки, частицы падали в пылесборник 6. Отражатель 4 препятствовал возвращению частиц в газовый поток. Очищенный газ выходил из циклона через газоотборный патрубок 2. Удаление осадка осуществлялось через люк 5.

Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя. Грубый очиститель-охладитель состоял из металлического кожуха 1, снабженного съемной крышкой 2. Внутри кожуха были установлены пластины 3 с большим количеством мелких отверстий, расположенных в шахматном порядке. Газ, проходя через отверстия пластин, менял скорость и направление, а частицы, ударяясь о стенки, оседали на них или падали вниз.

Грубые охладители-очистители последовательно соединяли в батареи из нескольких секций, причем каждая последующая секция имела большее количество пластин. Диаметр отверстий в пластинах от секции к секции уменьшался (РИСУНОК 5Г).

Вентилятор розжига

В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод.
Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.

Фильтры тонкой очистки

Для тонкой очистки газа чаще всего применяли очистители с кольцами. Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали. Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц. Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя. Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса. Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.

Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.

Методы уменьшения потерь мощности двигателей газогенераторных автомобилей

Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки.
Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.

Смеситель

Образование горючей смеси из генераторного газа и воздуха происходило в смесителе. Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха. Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха. Эжекционные смесители б и в различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.
Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.

Подключение и запуск ДВС

Поскольку теплотворная способность генерируемого из дров топлива гораздо ниже, чем у бензина, то для нормальной работы мотора соотношение воздух/горючее нужно изменить. Для этого придется смастерить смеситель и поставить его на впускном тракте. Простейший вид смесителя – воздушная заслонка, управляемая тягой из салона.

Завести холодный мотор на дровах – та еще задачка. Поэтому не стоит полностью отказываться от бензина, а подавать его только во время запуска, а потом переходить на горючее, вырабатываемое газгеном. Чтобы реализовать переключение на разные виды топлива, изготовьте смеситель по схеме, предложенной в книге И. С. Мезина «Транспортные газогенераторы»:

Примечание. В этой же книге вы найдете массу полезной информации касательно получения газообразного топлива из различных видов древесины и угля.

Теперь про особенности пуска и работы ДВС на древесине и угле:

  • размер дров, загружаемых в бункер, не должен превышать 6 см;
  • сырую древесину применять нельзя, поскольку вся выделяемая теплота уйдет на испарение воды и процесс пиролиза будет крайне вялым;
  • розжиг производится через специальное отверстие с обратным клапаном при включенном вентиляторе не позже чем за 20 минут до поездки;
  • мощность мотора снижается примерно на 50% по сравнению с ездой на бензине;
  • из предыдущего пункта вытекает, что ресурс работы двигателя на самодельном горючем тоже уменьшается.

Примечательно, что после кратковременных стоянок машина спокойно заводится от газгена, без перехода на бензин. После длительного простоя потребуется 5—10 минут на повторный розжиг установки.

Газогенераторы в транспортной технике

Практика доработки автомобилей под установку газовых генераторов началась еще в довоенные годы. На многие машины в рамках такой модернизации устанавливался генератор электрооборудования с высокой отдачей, так как нужно было обеспечивать достаточно мощный поток кислородного наддува. Для этого применялся электровентилятор. К наиболее заметным разработкам такого типа можно отнести «полуторки» ГАЗ-АА и «трехтонки» типа ЗИС-5, газогенераторные установки которых обеспечивали пробег на одной заправке до 80-90 км. Это немного, но в условиях дефицита жидкостного топлива на лесных хозяйствах данное решение полностью себя оправдывало экономически. Что касается сегодняшнего дня, то преобразование обычных авто с ДВС также мотивируется в основном интересами энергосбережения. Есть успешные примеры переделки легковых автомобилей ГАЗ-24 и АЗЛК-2141, которые на одной заправке проезжают до 120 км, поддерживая скоростной режим в диапазоне 80-90 км/ч.

Применение газогенераторных технологий в промышленности

Впервые газогенераторные технологии стали применяться в стекольной и металлургической промышленности в Европе, а в СССР нашли свое место в народном хозяйстве. К примеру, в середине 20 века по стране были распространены газогенераторные станции, вырабатывающие до 3 МВт из растительной биомассы и торфа. Современное оборудование заметно прибавило в технологическом развитии. Сегодня это целые комплексы, обеспеченные средствами автоматического и даже роботизированного управления под контролем ЭВМ. Мощность газогенераторных установок для выработки электроэнергии в промышленной сфере в среднем составляет 300-350 кВт. В некоторых случаях это целые химические заводы, предъявляющие жесткие требования к топливным материалам. Такие установки применяются на крупных производственных комплексах для обслуживания сразу нескольких систем потребления – силовых узлов (станков, линий сборки, динамомашин, компрессоров), осветительных приборов, вентиляционной инфраструктуры и т. д.

Эксплуатация автомобилей с газогенераторными установками

Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях.
Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке.
Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель.
При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» — стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель. Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя. При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя.
В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок.
Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра.
Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.

Бытовые газогенераторы

Домашнее котельное оборудование также улучшается, дополняясь новым функционалом и эксплуатационными возможностями. Для этой сферы предлагаются газогенераторные установки до 150 кВт на СУГ (сжижено углеродистый газ) в комплектации с системой жидкостного охлаждения, блоком зарядки аккумулятора и защитными приспособлениями. Это полноценный резервный генератор, который можно использовать в случае отключения основного энергоснабжения.

Расчет газогенераторного оборудования по мощности

Независимо от назначения энергетического агрегата, его технико-эксплуатационные показатели должны быть рассчитаны до покупки. Ниже приведен типовой пример расчета газогенераторной установки для домашней системы отопления.

Мощность агрегата усредненно следует соотносить с площадью целевого помещения эксплуатации, имея в виду следующую взаимосвязь: на 10 м2 приходится 1 кВт мощностного потенциала от генерируемой газовой смеси. Так, для площадки на 50 м2 потребуется установка не менее чем на 5 кВт, а если площадь производственного объекта составляет 1000 м2, то нужна будет система обогрева минимум на 100 кВт. Но и это не все. Для каждого проема в стене делается добавка примерно в 1 кВт, не считая поправки на климатические условия. В итоге объект общей площадью 1000 м2 с 10 окнами и 5 дверными проемами потребует использования установки с мощностью 1015 кВт как минимум.

Будущее развития газогенераторных технологий

В пользу продолжения развития газогенераторных агрегатов говорит их органичное сочетание с биотопливными элементами, которые являются безоговорочно одним из самых перспективных источников горючего сырья. В направлении оптимизации конструкций под пеллеты и брикеты с большей вероятностью будет осуществляться движение данной концепции. Что касается газогенераторных установок для автомобилей, то на промышленном уровне их разработка тоже может себя оправдать экономически. К слову, порядка 2 кг дешевых топливных материалов вырабатывают столько же энергии для машины, сколько 1 л бензина. Однако процессу развития в данном направлении все же препятствует необходимость усложнения конструкции автомобилей и появление все новых конкурентных генераторов, которые также приходят на смену обычным ДВС.

Работа автомобиля на газогенераторе

При эксплуатации такого газового двигателя не получится достичь скорости и ускорения, возможных при использовании бензинового аналога. Проблема заключается в составе древесного газа. Он на 50 % состоит из азота, на 20 % из окиси углерода; оставшиеся 18 % — водород, 8 % — двуокись углерода, 4 % — метан. Азот, который занимает половину удельной массы газа, вовсе не способен поддерживать горение, а соединения на основе углерода снижают эффективность горения. Большое количества азота уменьшает общую мощность такого генератора примерно на 30-50 процентов. Углерод снижает скорость горения газа, из-за чего не удается достичь высоких оборотов. Как следствие этого, понижаются динамические показатели автомобиля.

Генераторная установка для ЗИС-21

Как уже говорилось, основной принцип работы генератора — превращение твердого топлива в газ, поступающего в цилиндры. Газогенераторный ЗИС-21 в основном работал на таком топливе, как дуб и береза. Иногда использовался бурый вид угля, так как он был наименее гигроскопичным и давал больше всего газа на выходе.

Что касается конструкции типового генератора газа для ЗИС-21, то состоял он из следующих элементов: непосредственно самого газогенератора, охладителя-очистителя, тонкого очистителя, смесителя и электрического вентилятора.

Работа установки на ЗИС

В верхней части генератора располагался бункер, в который загружалось твердое топливо. Непосредственно под самим бункером располагался топливник. Здесь осуществлялось сжигание древесины. По мере того как сгорало старое топливо, осуществлялась «автоматическая подача» новой древесины. На деле же она просто падала из бункера в топливник под собственным весом, когда освобождалось место. Сама газогенерирующая установка располагалась с левого борта автомобиля.

В этом же топливнике происходило и образование окиси углерода из-за протягивания воздуха сквозь горящее топливо. Просасывание кислорода происходило либо за счет разрежения в цилиндрах, либо за счет работы электрического вентилятора. Эти методы являлись принудительными, но были установки и с естественной тягой воздуха. Однако в таком случае на подготовку к запуску могло уйти до часа времени.

Под топливником располагался зольник, как в любой обычной печи. Здесь скапливались продукты сгорания. Каждые 80-100 км было необходимо очищать его от золы. Однако здесь справедливо будет отметить, что этот факт доставлял проблемы лишь водителю транспортного средства.

Путь газа в установке и очистка

Весь полученный в процессе сгорания дров газ поступал в рубашку, которая окружала бункер. Таким образом достигался подогрев этого отсека. Это было необходимо, чтобы предварительно просушить всю древесину, подготовленную для сжигания. Далее стоит отметить, что после выхода из генератора газ имел температуру примерно 110-140 градусов. Поэтому он должен был проходить через секции радиатора. Там он не только понижал свою температуру, но и попутно очищался от тяжелых химических примесей.

Что касается очистки, то она происходила таким образом. Секции очистителя-теплообменника представляли собой внутренние перфорированные трубы. Эта конструкция была схожа с нынешними выхлопными системами. Горячий газ сильно расширялся, из-за чего терял скорость течения. Проходя через лабиринты труб, он еще сильнее замедлялся. Примеси отсеивались от него и оставались на внутренних стенках наружных труб обменников тепла. После этого следовал тонкий очиститель.

Мифы о газогенераторных установках

На просторах интернета часто встречается множество необоснованных утверждений о работе подобных агрегатов и дается противоречивая информация об использовании газогенераторов. Попытаемся все эти мифы развеять.

Миф первый звучит так: КПД газогенераторной установки достигает 95%, что несоизмеримо больше, нежели у твердотопливных котлов с эффективностью 60—70%. Поэтому отапливать дом с ее помощью куда выгоднее. Информация некорректна изначально, нельзя сравнивать бытовой газогенератор для дома и твердотопливный котел, эти агрегаты выполняют разные функции. Задача первого – вырабатывать горючий газ, второго – нагревать воду.

Когда говорят о генерирующем оборудовании, то его КПД – это отношение количества полученного продукта к объему газа, что возможно выделить из древесины теоретически, помноженное на 100%. Эффективность котла – это отношение вырабатываемой тепловой энергии дров к теоретической теплоте сгорания, также умноженное на 100%. Кроме того, извлечь из органики 95% горючего топлива может далеко не каждая биогазовая установка, не то что газогенератор.

Вывод. Суть мифа в том, что массу либо объем пытаются через КПД сопоставить с единицами энергии, а это недопустимо.

Обогревать дом проще и эффективнее обычным пиролизным котлом, что таким же способом выделяет горючие газы из древесины и тут же их сжигает, используя подачу вторичного воздуха в дополнительную камеру сгорания.

Миф второй – в бункер можно закладывать топливо любой влажности. Загружать-то его можно, да только количество выделяемого газа падает на 10—25%, а то и более. В этом отношении идеальный вариант — газогенератор, работающий на древесном угле, что почти не содержит влаги. А так тепловая энергия пиролиза уходит на испарение воды, температура в топке падает, процесс замедляется.

Миф третий – затраты на обогрев здания снижаются. Это нетрудно проверить, достаточно сравнить стоимость газогенератора на дровах и обычного твердотопливного котла, тоже сделанного своими руками. Плюс нужно водогрейное устройство, сжигающее древесные газы, например, конвектор. Наконец, эксплуатация всей этой системы отнимет немало времени и сил.

Вывод. Самодельный газогенератор на дровах, сделанный своими руками, лучше всего использовать совместно с двигателем внутреннего сгорания. Именно поэтому домашние умельцы приспосабливают его для генерации электроэнергии в домашних условиях, а то и прилаживают установку на автомобиль.

Почему это выгодно

Построив древесный газогенератор своими руками, вы сможете рассчитывать на следующие выгоды:

Газогенераторные автомобили

  • Уменьшенный расход топлива. Ведь КПД котла с газогенератором равно 90-95 процентам, а у твердотопливного котла – всего 50-60 процентов. То есть, на обогрев одного и того же помещения газогенератор потратит не более 60 процентов топлива, расходуемого обычным твердотопливным котлом.
  • Продолжительный процесс горения. Пиролиз дров происходит за 20-25 часов, а процесс термического разложения древесного угля заканчивается за 5-8 суток. Следовательно, загрузку дров в котел можно проводить всего раз в сутки. А если вы пользуетесь древесным углем, то «зарядка» котла осуществляется раз в неделю!
  • Возможность использовать в качестве топлива любой источник целлюлозы – от жмыха и соломы, до живой древесины с влажностью около 50 процентов. То есть о «сухости» дров можно уже не заботиться. Причем в топку некоторых моделей газогенераторных котлов можно отгружать даже метровые поленья, без предварительного измельчения (колки).
  • Отсутствие потребности в чистке и дымохода, и поддувала. Пиролиз утилизирует топливо практически без остатка, а продукт окисления олефинов – это обычный водяной пар.

Кроме того, необходимо отметить и возможность полностью автоматизировать процесс работы котла.

К отрицательной стороне практики использования газогенераторов на дровах относятся следующие факты:

  • Такой котел стоит очень дорого. Цена самого дешевого варианта «пиролизного» котла в два раза выше стоимости твердотопливного аналога. Поэтому самые рачительные хозяева предпочитают строить газогенератор на дровах своими руками.
  • Такой котел работает на электричестве, расходуемом на энергообеспечение систем надува воздуха в камеры сгорания. То есть, если нет электричества – нет и тепла. А обычная печь будет «работать» где угодно.
  • Котел генерирует стабильно высокую мощность. Причем снижение интенсивности нагрева спровоцирует сбой в работе всей системы – вместо горючих олефинов во вторичную камеру пойдет обычный деготь.

Но все недостатки «окупаются» обилием положительных характеристик и экономичной работой нагревательного прибора. Поэтому приобретение газогенератора, а тем более самостоятельное строительство такого «отопительного прибора» – это очень выгодное дело. И ниже по тексту мы опишем процесс создания дровяного газогенератора.

Применение

Как сделать газогенератор для дома или автомобиля: устройство и принцип работы

  1. Раньше газгены применялись в автомобилестроении, во время Великой Отечественной войны такие генераторы устанавливались на многие легковые автомобили-полуторки и грузовики марки ЗИС. Двигатели внутреннего сгорания, работающие на природном газе, были незаменимы и удобны из-за несложного устройства и дешевизны.
  2. Сегодня газогенераторные установки применяются для отопления домов и жилищ.
  3. Для выработки электроэнергии с помощью различных турбинных установок или электрогазогенераторов.
  4. До сих пор некоторые люди устанавливают на свои жигули подобные агрегаты. Машина при этом совершенно исправна и не требуют больших затрат. Также из-за низкого загрязнения воздуха по сравнению с нефтяным топливом, многие люди все больше переходят на автомобильные газогенераторы для ДВС.
  5. В промышленности применяются газогенераторы, работающие на каменном угле, который может давать большее количество энергии.

Плюсы технологии

Газогенераторы отлично справляются с базовыми задачами выработки энергии. Так, если обычные твердотопливные агрегаты имеют КПД на уровне 60%, то газовые аналоги – более 80%. Отмечаются и положительные нюансы обслуживания. Поскольку в камере происходит полное сгорание с выводом углекислотной смеси, в дальнейшем не требуется специальная очистка стен оборудования. Безусловно, есть и преимущества экономического характера. Простейшая газогенераторная установка на дровах позволяет сэкономить до 30-40% по сравнению с электрическими обогревателями и котлами, обеспечивающими аналогичный тепловой эффект.

Минусы технологии

Достоинства газогенераторов могли бы их сделать основным средством выработки электрической и тепловой энергии, если бы не слабые места. К ним в первую очередь относится многокомпонентность функциональных частей. Несмотря на простой принцип работы, газогенераторная установка содержит множество взаимозависимых элементов, что усложняет сборку и управление системой. Также стоит подчеркнуть необходимость постоянного поддержания горения путем загрузки топливного сырья. В условиях работающего производства это необходимо делать регулярно, поэтому без контролирующей автоматики обойтись не удастся.

Что же представляет собой данный агрегат

То, что оборудование этого класса привлекает все большее количество потребителей объясняется в первую очередь наиболее низкой ценой на топливо, если сравнивать с бензином и дизелем. Кроме того, работающие на газе генераторы являются одними из наиболее экологически чистых, что вполне соответствует требованиям современного покупателя.

Есть отличия у этого агрегата и в конструктивном плане.

Он состоит из следующих блоков:

  • Двигателя;
  • Альтернатора;
  • Технологической обвязки.

Наличие последнего узла, включающего в себя устройства управления и обслуживания, позволило добиться стабильной работы оборудования в соответствии с запросами потребителя. Многие модели имеют стабилизаторы выходного тока и микропроцессорные узлы, что гарантирует не только высокое качество вырабатываемой электроэнергии, но и возможность мониторинга работы двигателя. На сегодняшний день некоторые из газовых генераторов способны одновременно производить энергию и тепло. Именно они более всего интересуют современного потребителя.

Прочие параметры

При выборе газогенераторов немаловажную роль играют такие параметры, как тип охлаждения, уровень шума и способ запуска агрегата.

Установки бывают двух типов:

  1. С воздушным охлаждением;
  2. С водяным охлаждением.

Первая разновидность обладает компактными габаритами и низкой ценой. Однако такие генераторы не способны осуществлять подогрев мотора. В связи с этим данное оборудование нельзя эксплуатировать при низких температурах окружающей среды. Вторая категория агрегатов прекрасно подойдёт для использования в зимних условиях на протяжении длительного времени. Данные устройства полностью автоматизированы, имеют сложную конструкцию, а также обладают большой мощностью и высоким уровнем надёжности.

При выборе газового генератора необходимо помнить, что уровень шума, издаваемого установкой во время работы, находится на довольно низком уровне, и в среднем составляет 65-70 Дб. Если конструкцией аппарата предусмотрено наличие шумозащитного кожуха, то интенсивность распространения звуковых волн будет сведена к минимуму. Однако стоит помнить, что такое устройство способствует перегреванию силовой установки. Поэтому для охлаждения агрегата необходимо регулярно устраивать перерывы в его работе.

Запуск электрогенератора может осуществляться тремя способами:

  1. При помощи шнура;
  2. С использованием стартера;
  3. Посредством автоматической системы.

Первый метод основан на резком вытягивании шнура и требует некоторых физических усилий. Второй способ базируется на простом нажатии кнопки либо повороте ключа. Наиболее прогрессивным является третий вариант. Для включения устройства не требуется вмешательство пользователя. начинает осуществлять свою деятельность именно в тот момент, когда происходит обесточивание внутренней сети.

Заключение

Невзирая на всю привлекательность идеи сжигания дров вместо бензина в современных условиях она практически нежизнеспособна. Долгий розжиг, езда на средних и высоких оборотах, влияющая на ресурс ДВС, отсутствие комфорта, — все это делает действующие установки обычными диковинками, не находящими широкого применения. А вот сделать газогенератор для домашней электростанции – совсем другой вопрос. Стационарный агрегат совместно с переделанным дизельным ДВС может оказаться отличным вариантом электроснабжения дома.

Источники

  • https://AutoTopik.ru/vse-pro-avtomobili/908-na-drovah-ili-gazogeneratornye.html
  • https://FB.ru/article/455064/gazogeneratornyie-dvigateli-printsip-rabotyi-tehnicheskie-harakteristiki-toplivo
  • https://zen.yandex.ru/media/id/5a9ec3b3dcaf8ead78534917/avtomobili-sssr-gazogeneratornyi-gaz42-5e46ca246e1cd54e7a5c8afb
  • https://otivent.com/kak-sdelat-gazogenerator-dlya-avtomobilya-svoimi-rukami
  • http://www.uazbuka.ru/engine/fuel/GazGen/index.html
  • https://principraboty.ru/princip-raboty-gazogeneratora/
  • http://wiki.zr.ru/%D0%93%D0%B0%D0%B7%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80
  • https://cotlix.com/kak-sdelat-gazogenerator-dlya-doma-ili-avtomobilya

[свернуть]

Будущее газогенераторных автомобилей | АльтерСинтез

Газогенераторный автомобиль

Продолжение, начало статьи здесь

В 1990-х годах водород рассматривали в качестве альтернативного топлива будущего. Затем большие надежды возлагались на биотопливо. Позже большое внимание привлекло развитие электрических технологий в автомобилестроении. Если и эта технология не получит дальнейшего продолжения (тому есть объективные предпосылки), тогда наше внимание вновь сможет переключиться на газогенераторные автомобили.

Несмотря на высокое развитие промышленных технологий, использование древесного газа в автомобилях, представляет интерес с экологической точки зрения, по сравнению с другими альтернативными видами топлива. Газификация древесины несколько более эффективна, по сравнения с обычным сжиганием древесины, так как при обычном сжигании теряется до 25 процентов содержащейся энергии. При использовании газогенератора в автомобиле возрастает потребление энергии в 1,5 раза по сравнению с автомобилем работающем на бензиновом топливе (включая потери на предварительный нагрев системы и увеличение веса самой машины). Если принять к сведению, что необходимая для нужд энергия транспортируется, а затем вырабатывается из нефти то и газификация древесины остается эффективна по сравнению с бензином. Так же следует учитывать, что древесина является возобновляемым источником энергии, а бензин нет.

Преимущества газогенераторных автомобилей

Самое главное преимущество газогенераторных автомобилей заключается в том, что в нем используется возобновляемое топливо без какой-либо предварительной обработки. А на преобразование биомассы в жидкое топливо, такое как этанол или биодизель, может расходоваться энергии (в том числе и СО2) больше, чем содержится в изначальном сырье. В газогенераторном автомобиле для производства топлива энергия не используется, за исключением порезки и рубки древесины.

Юха Карелан (Juha Kaarelan) установил газогенераторную установку на свой Volvo в конце 2008 года

Газогенераторный автомобиль не нуждается в мощных химических аккумуляторных батареях и это является преимуществом перед электромобилем. Химические аккумуляторы имеют свойство саморазряжаться и нужно не забывать их заряжать перед эксплуатацией. Устройства, вырабатывающие древесный газ являются, как бы, натуральными аккумуляторами. Отсутствует необходимость в высокотехнологичной обработке отработавших и неисправных химических аккумуляторных батарей. Отходами работы газогенераторной установки является зола, которая может быть использована в качестве удобрения.

Правильно сконструированный автомобильный газогенератор значительно меньше засоряет воздушное пространство, чем бензиновый или дизельный автомобиль.

Газификация древесины значительно чище, чем непосредственное сжигание древесины: выбросы в атмосферу сопоставимы с выбросами при сжигании природного газа. При эксплуатации электромобиль не засоряет атмосферу, но позже, для зарядки аккумуляторов нужно приложить энергию, которая, пока что добывается традиционным путем.

Недостатки газогенераторных автомобилей

Несмотря на многие преимущества в эксплуатации газогенераторных автомобилей, следует понимать, что это не самое оптимальное решение. Установка, производящая газ, занимает много места и весит несколько сотен килограммов – и весь этот «завод» приходится возить с собой и на себе. Газовое оборудование имеет большой размер из-за того, что древесный газ имеет низкую удельную энергию. Энергетическая ценность древесного газа составляет около 5,7 МДж / кг, по сравнению с 44 МДж / кг у бензина и 56 МДж / кг у природного газа.

Газовое оборудование газогенераторной установки

При работе на газогенераторном газе не удается достигнуть скорости и ускорения, как на бензине. Так происходит потому, что древесный газ состоит примерно из 50 процентов азота, 20 процентов окиси углерода, 18 процентов водорода, 8 процентов двуокиси углерода и 4 процента метана. Азот не поддерживает горение, а углеродные соединения снижают горение газа. Из-за высокого содержания азота двигатель получает меньше топлива, что приводит к снижению мощности на 30-50 процентов. Из-за медленного горения газа практически не используются высокие обороты, и снижаются динамические характеристики автомобиля.

Шестиоконный Traction Avant с прицепным газогенератором, работающим на древесных чурках

Автомобили с небольшим объемом двигателя тоже можно оборудовать генераторами древесного газа (например, Opel Kadett на рисунке выше), но все же лучше оснащать газогенераторами большие автомобили с мощными двигателями. На маломощных двигателях, в некоторых ситуациях, наблюдается сильная нехватка мощности и динамики двигателя.

Сама газогенераторная установка может быть изготовлена и меньшего размера для небольшого автомобиля, но это уменьшение не будет пропорциональным размеру автомобиля. Были сконструированы газогенераторы и для мотоциклов, но их габаритные размеры сопоставимы с мотоциклетной коляской. Хотя этот размер значительно меньше, чем устройства для автобуса, грузовика, поезда или корабля.

Удобство использования газогенераторного автомобиля

Еще одна известная проблема газогенераторных автомобилей заключается в том, что они не очень удобны в использовании (хотя и значительно улучшились по сравнению с технологиями, используемыми во время войны). Тем не менее, несмотря на улучшения, современному газогенератору требуется около 10 минут, чтобы выйти на рабочую температуру, поэтому не получится сесть в автомобиль и немедленно уехать.

Кроме того, перед каждой последующей заправкой необходимо извлечь лопаткой золу – отработку предыдущего горения. Образование смол уже не так проблематично, чем это было 70 лет назад, но и сейчас это очень ответственный момент, так как фильтры должны очищаться регулярно и качественно, что требует дополнительного частого обслуживания. В общем, газогенераторный автомобиль требует дополнительных хлопот, полностью отсутствующих в работе бензинового автомобиля.

При запуске газогенератора и выходе на рабочий режим должно быть открытое пламя.

Высокая концентрация смертельного угарного газа требует дополнительных мер предосторожности и контроля от возможной протечки в трубопроводе. Если установка находится в багажнике, то не следует экономить на датчике СО в салоне автомобиля. Нельзя запускать газогенераторную систему в помещении (гараже), так как при запуске и выходе на рабочий режим должно быть открытое пламя (рисунок слева).

Массовое производство газогенераторных автомобилей

Газогенераторный автомобиль Вольксваген Жук в заводском исполнении

Все транспортные средств, описанные выше, построены инженерами любителями. Можно предположить, если бы было решено выпускать газогенераторные автомобили профессионально в заводских условиях, то, скорее всего, многие недостатки были бы устранены, а преимуществ стало бы больше. Такие автомобили могли бы выглядеть более привлекательно.

Схема расположения газогенераторного механизма в Volkswagen Beetle

Газогенераторный Volkswagen Typ 82, 1944 года выпуска

Например, в автомобилях Volkswagen, выпускаемых в заводских условиях во время Второй мировой войны, весь газогенераторный механизм был скрыт под капотом. С передней стороны в капоте находился только люк для загрузки дров. Все остальные части установки не были видны.

Еще один вариант газогенераторного автомобиля выпускаемого в заводских условиях – Mercedes-Benz. Как видно на фотографии ниже, весь механизм газогенератора скрыт под капотом багажника.

Газогенераторный Mercedes-Benz 230, выпускаемый на заводе

Вырубка леса

К сожалению, увеличение использования древесного газа и биотоплива может привести к образованию новой проблемы. И массовое производство газогенераторных автомобилей может усугубить эту проблему. Если начать значительно увеличивать количество автомобилей, использующих древесный газ или биотопливо, то в таком же количестве начнут снижаться запасы деревьев, а сельскохозяйственные земли будут принесены в жертву для выращивания культур, перерабатываемых на биотопливо, а это может привести к образованию голода. Использование газогенераторной техники во Франции во время Второй мировой войны стало причиной резкого уменьшения лесных запасов. Так же и другие технологии производства биотоплива приводят к уменьшению выращивания полезных для человека растений.

Хотя, наличие газогенераторного автомобиля может привести к более умеренному его использованию:
прогревать в течении 10 минут газогенератор или использовать велосипед для перемещения в магазин за продуктами – скорее всего выбор будет сделан в пользу последнего;
рубить в течении 3-х часов дрова для поездки на пляж или воспользоваться поездом – вероятно выбор будет в пользу последнего.

На запуск и разогрев газогенератора нужно потратить около 10 минут времени

Как бы там ни было, газогенераторные автомобили не могут равняться с бензиновыми и дизельными автомобилями. Только глобальная нехватка нефти или очень большое удорожание ее сможет заставить нас пересесть на газогенераторный автомобиль.

Комментарии:

Газогенераторные автомобили с дровами в бакеФотовольтаика в Германии

Газогенераторная установка – Справочник химика 21

    В течение ряда лет неоднократно изучалась и в отдельных случаях находила практическое воплощение идея использования продуктов предварительной газификации топлива в тепловых двигателях. Так, в 20—30-е годы широко использовали на автомобилях продукты газификации твердого топлива — древесные чурки, древесный и каменный уголь, торфяные и соломенные брикеты и др. Газификация осуществлялась в специальном газогенераторе, установленном на автомобиле (такие автомобили называли газогенераторными). Газогенераторная установка включала агрегаты очистки и охлаждения получаемого газа и приспособления для розжига топлива и обеспечения пуска двигателя. Основной топливный газ, получаемый при газификации, — оксид углерода. Кроме того, в продуктах газификации содержались водород, метан и другие горючие газы. Например, средний состав газа, получаемого из древесных чурок с абсолютной влажностью 20%, таков 20,9% (об.) СО, 16,1% (об.) На, 2,3% (об.) СН4, 0,2% -(об.) С Н , 9,2% (об.) СО2, 1,6% (об.) О2 и 49,7% (об.) N2. Теплота сгорания газа — около 5 МДж/м а горючей смеси с воздухом — 2,39 МДж/м . [c.182]
    Как известно, процесс производства воздушного газа основан иа продувании воздуха через слой раскаленного до высокой температуры угля (о деталях этого процесса см. например, Газификация топлива и газогенераторные установки , Гинзбург Д. Б. [1[. [c.241]

    ГАЗИФИКАЦИЯ ТВЕРДОГО ТОПЛИВА — превращение при высокой температуре в газогенераторных установках твердого топлива в горючие газы путем неполного окисления топлива кислородом, воздухом, водяным паром. Г. т. т. превращают даже низкосортные виды каменного и бурого угля, торфа, древесины, горючих сланцев и др. в В1.1соко-калорийное, удобное для использования, газообразное топливо, в состав которого входят СО, Нз, СН4, СОа, НаЗ, углеводороды и N2 в различных соопноше-ниях. [c.62]

    При получении водорода из природного газа имеются три стадии конверсия СН4 и СО, очистка моноэтаноламином, промывка и дозировка жидким азотом при конверсии коксовых газов — шесть стадий. Кроме того, для кокса нужны склады, развитой транспорт, громоздкие газогенераторные установки и т. п. Поэтому выгодна кооперация завода азотных удобрений, использующего коксовый газ, с металлургическим заводом. Также выгодна комбинация илн кооперирование химических предприятий с нефтехимическими заводами и комбинатами, так как при этом упрощается производственная структура, снижаются капиталовложения и эксплуатационные расходы. [c.18]

    Способ отделения твердых компонентов. При кетон-бензол-толуоловых процессах для отделения выкристаллизовавшихся компонентов применяют фильтрацию под вакуумом на барабанных вакуумных фильтрах непрерывного действия. Образующуюся лепешку осадка промывают там же па фильтре охлажденным свежим растворителем для уменьшения содержания в ней удержанного масла. Фильтраты от основной фильтрации и от промывки лепешки осадка выводят из фильтра раздельно. За фильтратом от промывки лепешки на заводах укоренилось название фильтрат верхнего вакуума . Процесс фильтрации на вакуумных фильтрах проводят в атмосфере инертного газа, почти не содержащего кислорода. В качестве инертного газа берут дымовые газы, получаемые сжиганием топлива без избытка воздуха на специальной газогенераторной установке. Давление инертного газа в системе поддерживают на уровне 0,5—0,7 ати и в кожухе фильтра около 0,01—0,015 ати. Лепешку, промытую на фильтре растворителем, удаляют с фильтрующей поверхности путем отдувки ее инертным газом, подаваемым под давлением с обратной стороны фильтрующего материала. Отделенная от фильтрующей ткани лепешка подхватывается далее ножом и шнековым устройством выводится из фильтра. [c.186]

    Технологическая схема и режим процесса ГТТ зависят от состава генераторного газа и назначения газогенераторной установки. В настоящее время в мире эксплуатируются сотни промышленных стационарных газогенераторных установок, которые конструктивно классифицируются по следующим признакам  [c.211]

    В пашей стране серийно выпускались газогенераторные автомобили ГАЗ-42 и ЗИС-21 (рис. 4.28), имевшие массу снаряженной газогенераторной установки 360 и 600 кг соответственно. При всех недостатках газогенераторных автомобилей (сложность эксплуатации, небольшие мощность двигателя и грузоподъемность) они обладали одним бесспорным преимуществом — возможностью работы на доступном и дешевом твердом топливе. В настоящее время в связи с изменением цены на нефтяные топлива во многих странах вновь возрождается интерес к газогенераторным автомобилям. В качестве основных сырьевых горючих материалов для них предлагаются различные органические отходы сельского хозяйства и лесной промышленности. [c.182]

    Смесь парафина и церезина с растворителем направляется на отгонную установку. Фильтры и остальная аппаратура продуваются инертными газами, чаще всего дымовыми газами, получаемыми на газогенераторной установке. Все приемники—для депарафинированного масла, для горячей и холодной промывки и др. — работают под вакуумом, создаваемым вакуум-насосом. [c.376]

    Сырой газ покидает газогенератор при высокой т-ре, а иногда и давлении и содержит большое кол-во примесей. Поэтому газогенераторные установки обязательно включают системы утилизации тепла и очистки газа. Наиб, распространены схемы, в к-рых горячие газы из газогенератора охлаждаются в паровом котле-утилизаторе. Получаемый пар применяют в самом процессе Г. или для выработки электроэнергии. [c.452]

    Доменный газ выделяется при выплавке чугуна в доменных печах, когда в результате термического воздействия дутья на кокс протекает процесс его газификации, близкий по своим показателям к процессу в специальных газогенераторных установках. Этот доменный, или как его иногда называют колошниковый,, газ состоит из окиси углерода, углекислого газа, азота и очень небольшого количества водорода, углеводородных соединений, водяного пара и кислорода. [c.18]

    Газ подземной газификации угля получается в результате осуществления генераторного процесса непосредственно в угольном пласте. Подземная газификация угля, впервые осуществленная в нашей стране, выгодно отличается от газификации топлива в специальных газогенераторных установках относительной простотой оборудования и возможностью использовать маломощные и крутопадающие угольные пласты. [c.18]

    Мдж м и выше. Такой газ может успешно транспортироваться на значительные расстояния (десятки километров и более) за счет избыточного давления па выходе из газогенераторной установки. [c.112]

    Оценка степени использования топлива определяется величиной к. п. д. газификации и термического к. п. д. газогенераторной установки. [c.116]

    Термический к. п. д. газогенераторной установки представляет собой отношение полезного тепла к суммарному количеству тепла, введенного в установку  [c.116]

    Горячий газ, выходящий непосредственно из газогенератора, называют неочищенным генераторным газом. Неочищенный газ часто сжигается в крупных печах. В этом случае газогенераторную установку и печь (или печи) следует располагать как можно [c.27]

    Стоимость газификации разных углей приведена в табл. 3. Эти. данные получены на газогенераторной установке, работающей почти на полную мощность. [c.28]

    Жидкое топливо характеризуется рядом достоинств. Оно легко может сохраниться над или под землей и в отдаленных от печи местах. Для жидкого топлива некоторых видов не требуется подогрев и они всегда готовы к употреблению, подобно природному или городскому газам, но с тем дополнительным преимуществом, что жидкое топливо можно подавать из хранилища в самую холодную погоду, в то время как природный газ в холодные дни часто отключают. Использование жидкого топлива не связано с теми потерями при хранении, которые неизбежны при употреблении генераторного, водяного и некоторых других газов. Регулирование температуры и атмосферы в печи не зависит от обстоятельств, находящихся в-не контроля обслуживающего персонала, что имеет место при пользовании газогенераторными установками. Жидкое топливо легко подается из хранилища к печи и сжигается без заметных остатков золы. [c.36]

    Технологию, состав газов, получающихся в различных газогенераторных установках, и способы очистки газа можно найти в обзорной литературе [23, 108, 118, 121, 146, 149]. Основное преимущество газификации древесины и других видов биомассы — малая потребность в кислороде и дополнительном паре, а также низкое содержание серы в сырье. В табл. 18.1 приводится состав неочищенного древесного газа для трех процессов газификации. [c.404]

    Для приготовления газа, поступающего в печь, служат специальные газогенераторные установки, в которых производится также и очистка газа от вредных примесей (влаги, сероводорода и других). Печи с защитной атмосферой работают при некотором избыточном давлении (5—10 мм вод. ст.), поэтому их делают герметизированными, что достигается применением различных уплотнений, масляных и песочных затворов и другими способами. [c.286]

    TOB, причем эти дополнительные элементы, вероятно, будут работать при более низких плотностях тока, чем остальные элементы в батарее. При этом неизбежно некоторое количество водорода будет выбрасываться в атмосферу, но можно было бы сжигать выпускаемые газы, а тепло использовать в конверсионной установке. Все это потребует строгой технической оценки, чтобы определить, стоит ли объединять газогенераторную установку с топливным элементом в единый агрегат. [c.394]

    Газогенераторные установки целесообразно располагать на-улице под навесом, а не строить специальных зданий. При этом отепляются лишь некоторые узлы установки. Это сокращает общие капиталовложения. При массовом строительстве газогенераторов можно еще больше сократить затраты на их сооружение, если монтировать газогенератор и всю очистную аппаратуру в серийно выпускаемых блоках в металлическом каркасе, который по размерам укладывается в габарит железнодорожных перевозок. Опыт изготовления такой установки шириной 2, высотой 3,2 и длиной 6,75 м, весом 6,7 т для переработки 10 000 пл. древесины в год показал принципиальную возможность организации серийного выпуска газогенераторных блоков, не требующих специальных производственных заданий. Из готовых блоков на месте можно монтировать газогенераторные станции любой мощности. [c.131]

    Промышленное коксование тяжелых нефтяных остатков проводилось в аппаратуре весьма низкой производительности. Так, например, муфельные керамические печи конструкции В. Ф. Герра и Г. П. Ульянова, вступившие в эксплуатацию в 1926 г., были емкостью 1 м . В них подвергали коксованию тяжелые остатки, получавшиеся при пиролизе керосина в малопроизводительных ретортных печах Пиккеринга и в газогенераторных установках. В 1931 г. вступили в эксплуатацию новые крупные алюминиевые заводы и электрометаллургические цехи на металлургических заводах для выплавки высоколегированных сталей. Потребовалось значительно увеличить выработку нефтяного кокса, необходимого для изготовления анодов и гра-фитированных электродов. В 1932 г. было получено уже 20 тыс. т нефтяного кокса путем коксования в металлических горизонтальных кубах крекинг-остатка и пиролизных смол и пека. В дальнейшем выработка нефтяного кокса постепенно увеличивалась и к 1941 г. возросла по сравнению с 1932 г. примерно в 4 раза. [c.5]

    Производственные испытания первой промышленной газогенераторной установки приведут к унификации всех схем в одну, наиболее рациональную, которая будет принята для типового строительства в леспромхозах при использовании древесных отходов лесозаготовок. [c.131]

    Эксплуатация газогенераторов. Перед пуском газогенераторной установки производится опробование на герметичность газогенератора, газоходов и промывателей. Посредством воздуходувки в них создается давление, которое после прекращения подачи воздуха и закрытия шибера не должно быстро спадать. [c.76]

    Л. П. Грань, Силовые газогенераторные установки, Машгиз, 1956. [c.125]

    Газогенераторная установка состоит из газогенератора, бункеров для топлива и шнековых. питателей, трубчатого холодильника, сборника, смесителя высокого давления, холодильника газа низкого давления, насоса вы.сокого давления и т. д. [c.235]

    Смесь парафина и церезина с растворителем направляется па отгонную установку. Фильтры и остальная аппаратура продуваются инертными газами, чаще всего дымовыми газами, получаемыми на газогенераторной установке. [c.357]

    Д. Б. Г и НС бур г. Газификация топлива и газогенераторные установки, Гизлегпром, 1938. [c.326]

    В связи с тем, что опыты проводились в тяжелых зимних условиях при несовершенной газогенераторной установке, вырабатывающей газ непостоянного состава, многие поисковые работы не были завершены. Однако проведенные испытания подтвердили возможность создания крупной иромышленной горелки и выпарного аппарата для целого ряда растворов, где обычно выпарные аппараты не могут применяться. [c.65]

    Производство СМС, как известно, отличается развитой технологической схемой, включающей склад сырья, отделение приготовления алкнлсульфатов или алкиларилсульфонатов, отделение приготовления композиции, распылительную сушильную башню с газогенераторной установкой, системы пылеулавливания, ввода полезных добавок в порошок после башни, транспортировки и хранения готового продукта. [c.24]

    ГАЗОГЕНЕРАТОРНЫЙ АВТОМОБИЛЬ — автомобиль, в двигателе к-рого в качестве топлива используется газ, полученный переработкой твердого топлива (древесных чурок, угля, торфа и др.) в газогенераторной установке, смонтированной либо на шасси автомобиля, либо на специальном прицепе, буксируемом этим автомобилем. [c.137]

    До последних лет наиболее распространены были газогенераторные установки, работающие при атмосферном давлении с подачей в них воздуха с некоторым количеством водяного пара. В таких газогенераторах получается так называемый смешанный генераторный газ с теплотой сгорания от 4,5 до 6,5 Мдж1м . Основными горючими компонентами этого газа являются окись углерода и водород при небольшом содержании углеводородных соединений. Негорючая часть (балласт) состоит из азота, углекислого газа и водяных паров. [c.19]

    Итого стоимость газификации 1 т угля, за исключением стоимости самого угля, долл.. . Стоимость газогенераторной установки, долл. Амортизационные расходы 1 т газифиии- [c.29]

    Неочищенный генераторный газ выходит из газогенератора при температуре от 540 до 760°. При передаче по длинным трубопроводам его теплосодержание уменьшается, и конденсируются пары смолы. Поэтому, если необходимо расположить газогенераторную установку на значительном расстоянии от печи ил>и если нужно подавать газ ко многим сравнительно небольшим и разбросанным по территории предприятия печам, то газ приходится охлаждать и очищать. Для этого требуется следующее дополнительное оборудование холод11льник, смолоотделитель, скруббер и газодувка. Очищенный генераторный газ можно передавать на большие расстояния по неизолированным трубопроводам. Однако вследствие низкой теплотворности такого газа (около 1140 ккал1нм ) при передаче его на расстояние в сотни метров приходится применять трубопроводы сравнительно большого диаметра или расходовать значительное количество электроэнергии на повышение давления газа. Очищенный газ можно хранить в газгольдерах, что весьма целесообразно при неравномерном потреблении. [c.30]

    Крупным недостатком электрофильтров при применении их на газогенераторных установках, перерабатывающих древесину, был непродолжительный срок работы (8 месяцев) осадительных электродов, выполненных из обычных стальных труб с толщиной стенки 12 мм. После замены стальных электродов деревянными, изготовленными в виде прямоугольных вертикальных труб, исполненных из -iporaHbix досок, продолжительность работы элек-трофильтро1в без замены осадительных электродов увеличилась [c.124]

    Процессы газификации непрерывно совершенствуются. Для получения смешанного газа в газогенераторах стали применять паро-кислородное дутье вместо паро-воздутногп. Это позволило увеличить подачу пара в генератор (и, следовательно, повысить долю водяного газа в получаемом смешанном газе) и исключить из состава получаемого газа азот—балластную примесь, неизбежную при паро-воздушном дутье. Переход на паро-кислородное дутье дал также возможность резко повысить теплотворную способность генераторного газа (см. табл. 12), увеличить на 5—8% к. п. д. газогенераторной установки и проводить газификацию как непрерывный процесс благодаря одновременному протеканию эндотермических реакций, требующих подвода тепла, и экзотермических реакций, компенсирующих его расход. [c.113]


Разработка мобильного комплекса с газогенераторной установкой Текст научной статьи по специальности «Химические технологии»

Shepeleva Elena Vital’evna (Russian Federation, (national research university) (454080, Lenin av., 76, Chelyabinsk) – post-graduate student of the Depart- Chelyabinsk, Russian Federation, e-mail: ment Motor Transport, South Ural state University sev [email protected]).

УДК 629.113

РАЗРАБОТКА МОБИЛЬНОГО КОМПЛЕКСА С ГАЗОГЕНЕРАТОРНОЙ УСТАНОВКОЙ

И А. Козлов, В.В. Евстифеев, Р.Ш. Айтыков, Ж.Г. Оспанов ФГБОУ ВО СибАДИ, Россия, г. Омск

Аннотация. Представлены тепловые, некоторые конструкторские расчеты, а также планировочные решения одного из вариантов разработки мобильного автомобильного комплекса, предназначенного для работы в районах Севера, в экстренных ситуациях, в зонах, где нет заправочных станций и складов ГСМ, с установкой для питания карбюраторного двигателя газогенератора обращенного действия. Базовый автомобиль с V-образным карбюраторным двигателем ЗМЗ – 5233.10 мощностью 130 л.с. оснащается двумя газогенераторами (для обеспечения центровки), резервным бензобаком, лебедкой, емкостями для топлива, бензопилой и ручными пилами, топорами и другими инструментами.

Ключевые слова: базовый автомобиль, газогенераторы, виды твердого топлива, устройства очистки и охлаждения газа, генераторный газ, схемы газификации.

Введение: В условиях крайнего Севера, в экстренных ситуациях, в зонах, где нет заправочных станций и складов ГСМ, использование транспортно-технологических комплексов с газогенераторными установками (обращенного или прямого действия) для питания карбюраторных двигателей весьма перспективно. Об этом говорит опыт Канады и КНДР. Используя, например, в качестве базового шасси внедорожные автомобили и газогенераторы прямого или обратного действия, можно разработать универсальные мобильные комплексы.

Для разработки комплексов был выбран автомобиль Caдкo-Next с 8-ми цилиндровым V-oбpaзным карбюраторным двигателем ЗМЗ – 5233.10 мощностью 130 л.с. при 3200 – 3400 об/мин, имеющим объем цилиндров 4680 см3, с крутящим моментом 314 Нм, при 2000

об/мин. Двигатель дешевый, отработанный в производстве и доступный в обслуживании. Простой и неприхотливый, он несложен в ремонте и не требует высокой квалификации обслуживающего персонала, что особенно важно для России, в условиях больших расстояний до станций технического обслуживания. Доступность ремонта дополнительно обеспечивается широким распространением запасных частей.

Теплотехнические расчеты газогенераторных установок

Первый комплекс предлагается оснастить газогенератором прямого действия (рисунок 1а), второй – газогенератором обратного действия (рисунок 16), [1, 2]. мм 260

Схемы газификации выбраны с учетом того, в каких регионах будут использоваться комплексы. Преимущество прямого процесса – простота исполнения [2, 3]. Недостаток -большое содержание влаги и смол; такой газ непригоден для питания двигателей, а очистка требует сложной аппаратуры. Данный недостаток можно устранить, используя бессмольное очищенное топливо: древесный уголь, дрова не хвойных пород, кокс, полукокс, антрацит (таблица 2), [2, 3].

Основным достоинством газогенераторов обращенного действия является то, что в них создаются условия для получения бессмольного газа из таких богатых смолами топлив, как дрова хвойных пород, торф и растительные отходы (таблица 2), [4, 5, 6]. В силу этого обращенный процесс газификации и получил наибольшее распространение в силовых газогенераторах стационарного и транспортного типов.

При прямом процессе газификации воздух поступает через колосниковую решетку и входит в кислородную зону (рисунок 1а). Процесс горения углерода протекает с выделением тепла, при этом температура в слое повышается до 1200-1500°С. Поток газов из кислородной зоны, поднимаясь к верху, нагревает расположенный выше слой топлива до температур 900-1100 °С. Здесь углекислота вступает в соединение с раскаленным углеродом и частично восстанавливается до окиси углерода [4, 5, 6, 7],

В газогенераторе обращенного действия воздух подается в среднюю часть слоя топлива (рисунке 1 б), а образующиеся газы отсасываются снизу. Таким образом, активная зона занимает нижнюю часть газогенератора – от места подвода воздуха до колосниковой решетки, ниже которой расположен зольник с газоотборным патрубком.

Рис. 1. Схемы газогенераторов: а – прямого действия, б – обратного действия

В состав газогенераторных установок входят (рисунок 2): емкости 2, в которых протекают реакции газификации, очистители-охладители 4, трубопроводы, блоки тонкой очистки 5, раздувочные вентиляторы 7, охладители – смесители 8 и др. элементы.

Теплотворность топлива определяется по формулам Д.И. Менделеева [7]:

Ов = 81С + 300Н – 26(0 – в),

(1)

где С, Н, S, О – процентное содержание химических элементов и влаги W в топливе.

Генераторный газ, получающийся в зоне газификации газогенератора благодаря взаимодействию углерода топлива с кислородом воздуха, представляет с обой смесь нескольких газов. Эти газы являются результатом протекания ряда реакций.

Первая реакция:

С + 02 = СО + О = С02 + 97200 ккал. (3)

Он = 81С + 300Н – 26(0 – 5) – 6(9Н + IV), (2)

Тепло, выделяющееся при этой реакции, приводит к развитию высоких температур в кислородной зоне и плавлению золы. В этих

случаях добавка водяного пара W к воздуху снижает температуру и выравнивает ход генераторного процесса.

Рис. 2. Схема газогенераторной установки: 1 – забор воздуха; 2 – газогенератор; 3 – выход газа;4 – блок очистителей-охладителей; 5 – слив конденсата; 6 – блок тонкой очистки; 7 – раздувочный вентилятор; 8 – отстойник газа; 9 – смеситель; 10 – подача смеси в цилиндр; 11 – забор воздуха *Примечание: 1 – топливо смолистое; 2 – топливо бессмольное.

Скорость реакции в общем виде выражается уравнением:

Ж М

= К1С0 – С1) (4)

где С0 – начальная концентрация кислорода; Ст – кислород, израсходованный в течение времени Э; К – коэффициент скорости реакции.

Вторая реакция:

С + С02 = 2СО – 42000 ккал.

(5)

Эта реакция характерна для восстановительной зоны и отражает процессы восстановления углекислоты в окись углерода. Реакция эндотермичная и идет с увеличением объема, следовательно, повышение температуры и уменьшение давления будут способствовать увеличению выхода СО.

Константа равновесия реакции определяется по формуле:

к = (СО)2 /(СО2).

(6)

Скорость реакции восстановления углекислоты зависит от состояния реагирующей поверхности, от ее пористости.

Время пребывания углекислоты в восстановительной зоне, необходимое для завершения реакций восстановления, можно представить уравнением скорости этой реакции:

^ = к1(т – М+1 х) (7) Л 1 2 где х – содержание СО в газе по истечению времени Э; т – содержание С02 в газе в начале реакции; ^ – коэффициент скорости реакции; 1 – время протекания реакции в сек.

Производительность газогенератора определяется в зависимости от параметров двигателя, для питания которого он рассчитывается. Если й и S — диаметр и ход поршня, м; I – число цилиндров; п – частота вращения коленчатого вала; п — коэффициент наполнения.

Тогда расход газовоздушной смеси Qcм для четырехтактного двигателя составит:

а,

ж-й2

в -1 -пП 60 мУ = 315,7м3 / ‘ 2 /час

или Осм = Огаз + Огаз \-0а

час

(8) (9)

где Q газ – расход газа двигателем в м3 / час; а — коэффициент избытка воздуха; и – теоретическое количество воздуха для сгорания газа, м3/м3,

= 1 [0,5(С0 + Н2) + 2СН4 – 02] = 0,142м3 / м3 (10)

Из выражений 8, 9,10 получим:

1

1 + а – Ь

■ Ж ^ Б -1 — 60 = 277м3 / час 4 2

(11)

4

Тогда расход твердого топлива двигателем определится (при выходе сухого газа в среднем 2,3 м3 /кг) из выражения [3]:

в = О Газ / Е = 120,43 кг/час , (12)

9 =

120 100

: 1,2.

(13)

Эффективная мощность двигателя N0 определяется методом теплового расчета. Коэффициент наполнения пя Для газогенераторных двигателей колеблется от 0,65 до 0,75. Расход топлива в эксплуатации будет менее расчетного, так как двигатель обычно работает на прикрытых дросселях. Для получения эксплуатационного расхода необходимо вводить поправку на степень использования мощности.

Основными размерами камеры газификации являются ее высота и диаметр. Высота камеры определяет необходимую и достаточную для завершения процесса толщину слоя топлива, т. е. размер активной зоны по

высоте. Диаметр камеры определяет возможную производительность генератора [7].

Профессором Н.П. Вознесенским [8] доказано, что реакции газификации протекают на поверхности топлива. Внутренние области частиц в активной зоне реакцией не охватываются. Поэтому производительность процесса пропорциональна не объему слоя, а его поверхности. В связи с этим рекомендуется заваливать, например, чурочки длиной до 60 мм и небольшого сечения [8]. Таким образом, если при газификации древесины при температурах зоны 1200 и 850°С – средний размер частиц, угля, например, 30 мм, то высота активной зоны будет 260 мм. Опыт показал, что для газификации кускового торфа и торфяного кокса высота активных зон может быть принята такая же, как для древесного угля. Высота же зоны для ископаемых топлив увеличивается в связи с образованием шлака. Приблизительно можно принять коэффициенты увеличения по сравнении с размерами соответствующих активных зон древесного угля: для антрацита 1,8, для бурого угля и многозольного кокса — 1,3.

Таблица 3 – Высота активной зоны [9]

Средний диаметр частиц топлива в активной зоне, мм Удельная поверхность слоя, см2/см3 Высота активной зоны в мм при средних температурах зоны горения / зоны восстановления

1500/1000°С 1200/850°С

45 0,86 301 377

50 0,77 336 422

55 0,71 365 457

Высота активной зоны определяет высоту камеры газификации (таблица 3), а диаметр камеры газификации D1 подсчитывает-ся по формуле:

й1 = 113 – = 113 120 = 50,5см (14) 1 \ q V 600

Но, так как при установке одного газогенераторного котла, диаметром 600 мм, нагрузка на раму автомобиля и на его конструкцию является не симметричной, и центр тяжести смещается в поперечном направлении, а это ведет к небезопасной эксплуатации автомобиля, было принято решение об установке двух котлов диаметром 400 мм.

По формуле (14) – где G – расход твердого топлива двигателем, кг/час; q — напряженность горения, кг/м2 час (для древесных чурок р = 500 – 900 кг/м2 час; для древесного угля q = 200 – 500 кг/м2 час; для антрацита q = 200 -300 кг/м2 час). Тогда для древесно-чурочных

газогенераторов D1/D2 = 1,6 – 2,3. Расстояние от плоскости, проходящей через оси фурм до горловины, для обычных древесно- чурочных автотракторных газогенераторов принимается от 100 до150 мм. Число и размер фурм определяется условиями равномерного охвата активной зоны дутьем и принятой скоростью входа воздуха. Для газогенераторов обращенного процесса число фурм принимается от 5 до 12.

Суммарное проходное сечение фурм или сопла определяется через часовой расход воздуха ичас через фурмы (с поправкой на температуру подогрева Э° С):

^ = = 277. = 97 м3/

273

273

(15)

и скорость входа воздуха: V = 20 – 30 м/сек, так:

f = 2,78

97 2

= 2,78-— = 12,25 см2 22

(16)

V

Объем бункера определяется из выражения:

= С-1 = 120-2; = 2 мз, (17)

6 г 100

где G — расход твердого топлива, кг/час; г’ — максимальное число часов работы на одной загрузке; Y — насыпной вес топлива, кг/м3. Диаметр газопровода равен:

Таблица 4 – Параметры газогенер

d = од, /277*673 = 19 , (18) V 10

где Q’i-аз – расход газа при 0°C и 760 мм. рт. ст.; t — температура газа в рассчитываемом сечении газопровода, °С; v1 — допустимая скорость газового потока, равная 10-12 м/сек. В результате теплового расчета определены параметры газогенераторной установки (таблица 4).

Параметр Значение Размерность

Расход газа 277 м3/час

Расход дров на 100 км 120 кг

Диаметр камер газификации Две по 40 см

Диаметр газопровода 19,1 мм

Мощность ДВС 96 (130) кВт (л.с.)

Время работы на одной

загрузке при 2 ч

средней скорости

движения – 40 км/час

С учетом расчетов и рекомендаций [4, 9, 10] предлагаются проекты мобильных комплексов с газогенераторными установками прямого и обращенного процессов газификации. Общая компоновка представлена на рисунке 3. Базовый автомобиль оснащается двумя газогенераторами 1 (в случае выхода из строя одного – второй может быть резерв-

ным), очистителями-охладителями 2, блоком чистой очистки газа (расположен между газогенераторами, резервным бензобаком 3, лебедкой, емкостями для топлива, бензопилой и ручными пилами, топорами и другими инструментами, запасное колесо. Возможно в возимый комплект включать надувную лодку.

1 □ □

ы Й . П

Щ,

2755

l/ 2J зУ

1*515

71,00

Рис. 3. Компоновка мобильного комплекса на шасси Газон – Next: 1 – газогенераторы; 2 – батарея охладителей – очистителей; 3 – резервный топливный бак

Заключение

Теплотехнические расчеты газогенераторов с привязкой к современному российскому автомобилю показали, что в результате проектирования и внедрения установок мы получим мобильные комплексы, которые отвечают требованиям оснащения, расходу топ-

лива и универсальности применения в районах отсутствия ГСМ, складов ГСМ, автобаз, АТП. Базовое шасси автомобилей обеспечивает хорошую проходимость по грунтовым дорогам, в любых климатических условиях и в любое время года.

Библиографический список

1. Менделеев Д.И. Сочинения, Том 11. Топливо / под ред. Н.М. Караваева – Л.:, М.: Изд-во АН СССР, 1949, – 584 с.

2. Мезин, И.С., Транспортные газогенераторы / И.С. Мезин. – М.: Сельхозгиз, 1948.

3. Коллеров, Л.К. Газомоторные установки / Л.К Коллеров. – Л.: Машгиз, 1951. – 237 с.

4. Руководство по устройству, изготовлению оборудования и технике безопасности газогенераторных станций, Гостоптехиздат, 1949.

5. Греберг, Г Основы учения о теплообмене / С. Эрк, У. Григулль, Г.Греберг // под редакцией Гухмана. – М.: Машгиз, 1958. – 565 стр.

6. Теплотехника: Учебник / под ред. И.В. Крутова. – М.: Машгиз, 1986. – 432 с.

7. Михайловский, В.П. Расчеты горения топлива, температурных полей и тепловых установок технологии бетонных железобетонных изделий: учебное пособие /В.П. Михайловский, Э.Н. Мар-темьянова, В.А. Ушаков. – Омск: Изд-во СибАДИ, 2011. – 261 с.

8. Белоусов, В.Н. Топливо и теория горения. 4.1. Топливо: Учебное пособие / В.Н. Белоусов, С.Н. Смородин, О.С. Смирнова. – СПб.: Изд-во СПбГТУРП, 2011. – 84 с.

9. Крамаренко Г.В. Техническая эксплуатация автомобилей. — М.: Транспорт, 1983. — 487 с.

10. Хасанов Р.Х. Основы технической эксплуатации автомобилей: Учебное пособие. – Оренбург: ГОУ ОГУ, 2003. – 193 с.

11. Определение основных размеров газогенератора. Лесотранспортные машины. Industrial -wood.ru

12.Вознесенский Н.П. Легкие газогенераторы, исследование их работы, теория, расчет и применение в лесотранспорте: Дис. … канд. техн. наук / Н. П. Вознесенский. – Архангельск: Лесотехнический институт. -1937. – 472 с.

DEVELOPMENT OF MOBILE COMPLEX WITH THE GAS GENERATOR

I.A. Kozlov, V.V. Evstifeev, R.Sh. Aytykov, J.G. Ospanov

Abstract. Presented heat, some engineering calculations and planning decisions of one embodiment of a mobile automobile complex development, designed to work in areas of the North, in emergency situations, in areas where there are no gas stations and fuel depots, with the installation of the carburettor engine power gas generator facing action . The base car with a V-carburetor engine ZMZ – 5233.10 130 hp is equipped with two gas generators (for centering), reserve fuel tank, winch, tanks for fuel, chainsaws and handsaws, axes and other tools.

Keywords: the base car, gas generators, solid fuels, gas cleaning and cooling devices, producer gas, gasify.

References

1. DI Mendeleev Works, Volume 11. Fuel / ed. NM Karavaeva – L: M .: Publishing House of the USSR Academy of Sciences, 1949. – 584 p..

2. Mezin, IS, Transportation gasifiers / IS Mezin. -M .: Sel’khozgiz 1948.

3. Kollerov, LK NGV installation / LK Kollerov. – L .: Mashgiz, 1951. – 237 p.

4. The installation guide, the production equipment and the safety of gas-stations, Gostoptekhizdat 1949.

5. Greberg, D Fundamentals of heat transfer / S. Erk, W. Grigull, G.Greberg // edited Gukhman. – M .: Mashgiz, 1958. – 565 p.

6. Heat: Textbook / red.I.V. Krutov. – M .: Mashgiz, 1986. – 432 p.

7. St. Michael, VP Calculation of fuel combustion, temperature fields and thermal installations of concrete technology concrete products: a manual /V.P. St. Michael, EN Martemyanova, VA Ushakov. – Omsk: Publishing house SibADI, 2011. – 261 p.

8. Belousov, VN Fuel and combustion theory. Part 1. Fuel: Textbook / VN Belousov, SN Smorodin OS Smirnova. – SPb .: Publishing house SPbGTURP, 2011. – 84 p.

9. Kramarenko G. Technical operation of the vehicle. — M .: Transport, 1983. — 487.

10. Hasanov AD Bases of technical operation of automobiles: Textbook. – Orenburg: SEI OSU, 2003. -193 p.

11. Determination of the main dimensions of the gasifier. Lesotransportnye machine. Industrial -wood.ru

12. Ascension NP Light gas generators, study of their work, theory, calculation and application in leso-transporte: Dis. … Cand. tehn. Science / NP Ascension. – Archangel: Forestry Institute. -1937. – 472 with.

Козлов Илья Анатольевич (Россия, г. Омск) -магистрант, кафедра «Автомобили, конструкционные материалы и технологии», ФГБОУ ВО «СибАДИ» (644080, г. Омск, пр. Мира, 5, e-mail: [email protected].

Евстифеев Владислав Викторович (Россия, г. Омск) – доктор технических наук, профессор кафедра «Автомобили, конструкционные материалы и технологии», ФГБОУ ВО «СибАДИ» (644080, г. Омск, пр. Мира, 5, e-mail: [email protected].

Айтыков Риал Шеикпарович (Россия, г. Омск) – магистрант, кафедра «Автомобили, конструкционные материалы и технологии», ФГБОУ ВО «СибАДИ» (644080, г. Омск, пр. Мира, 5, e-mail: [email protected].

Оспанов Жаслан Гагашевич (Россия, г. Омск) -магистрант, кафедра «Автомобили, конструкционные материалы и технологии», ФГБОУ ВО «СибАДИ» (644080, г. Омск, пр. Мира, 5, e-mail: [email protected].

Kozlov Ilya Anatol’evich (Russia, Omsk) – graduate student, department of “Cars, construction materials and technologies,” FGBOU IN “SibADI” (644080, Omsk, Mira, 5, e-mail: [email protected].).

Evstifeev Vladislav Viktorovich (Russia, Omsk) -doctor of technical sciences, professor of department of “Cars, construction materials and technologies,” FGBOU IN “SibADI” (644080, Omsk, Mira, 5, e-mail: VladEvst @. mail.ru).

Aytykov Rial Sheikparovich (Russia, Omsk) -graduate student, department of “Cars, construction materials and technologies,” FGBOU IN “SibADI” (644080, Omsk, Mira, 5, e-mail: [email protected].).

Ospanov Zhaslan Gagashevich (Russia, Omsk) -graduate student, department of “Cars, construction materials and technologies,” FGBOU IN “SibADI” (644080, Omsk, Mira, 5, e-mail: zhaslan.ospanov.93. @ mail.ru).

УДК 656.1

ИССЛЕДОВАНИЕ ПОКАЗАТЕЛЕЙ РАБОТЫ ОБЩЕСТВЕННОГО ТРАНСПОРТА Г. ОМСКА

C.B. Сорокин, М.Е. Каспер Сибирская государственная автомобильно-дорожная академия (СибАДИ), Омск, Россия

Аннотация. Статья посвящена исследованию динамики развития пассажирских перевозок общественным транспортом в городе Омске. В статье обобщается практический опыт перевозок городским общественным транспортом в Омске, начиная с 1970 года и по настоящее время. В статье собраны и обработаны данные о работе общественного пассажирского транспорта в Омске, дана характеристика его работы, показана динамика для таких показателей как объем перевозок, количество подвижного состава, эксплуатационная скорость, интервал движения и других по годам, видам транспорта, в разрезе предприятий.

Ключевые слова: городской общественный пассажирский транспорт, объем перевозок, автотранспортное предприятие, муниципальный транспорт, коммерческий транспорт.

Введение

Современное состояние пассажирских перевозок городским общественным транспортом в Омске характеризуется ухудшением показателей работы муниципального транспорта и увеличением доли частного капитала в данной отрасли. В городе Омске около двух третей всех маршрутов города обслуживаются перевозчиками

немуниципальной собственности. При этом формирование маршрутной сети и структуры парка подвижного состава коммерческих перевозчиков осуществляется, как правило, стихийно. И хотя ускоренное развитие частного капитала сокращает в целом необходимость в бюджетном финансировании данной отрасли, проблемы муниципального транспорта, при этом, всё более обостряются. Для того, чтобы определить дальнейшие направ-

ления повышения эффективности работы общественного транспорта в условиях слабой координации работы муниципального и коммерческого транспорта, высокой степени износа подвижного состава муниципального транспорта и нарастающей конкуренции со стороны частных перевозчиков, целесообразно проанализировать динамику развития общественного пассажирского транспорта в городе.

Динамика развития пассажирских перевозок общественным транспортом в Омске

Одним из основных показателей, характеризующим эффективность работы общественного транспорта является объём перевозок. На рисунке 1 представлено изменение годового объёма перевозок общественным пассажирским транспортом в Омске [1-8].

Газогенераторные пиролизные установки на дровах в автомобилях ДВС.

Во Вторую мировую войну практически весь моторизованный транспорт континентальной Европы был приспособлен для использования дров в качестве горючего.

Автомобили на древесном газе или иначе – газогенераторные, выглядят не очень элегантно, но на удивление эффективны и являются экологической альтернативой своим бензиновым родственникам, а по своим техническим характеристикам вполне сравнимы с электромобилями.

Рост цен на топливо вызвал возрождение интереса к этой почти забытой технологии, и сегодня десятки «дровомобилей», сделанных умельцами, колесят по миру.

Органический материал превращается в горючий газ при температуре 1400°C; впервые технология газификации древесины была применена в 1870-ых для получения газа для уличных фонарей и приготовления пищи.

В 1920 году немецкий инженер Георг Имберт (Жорж Эмбер | Georges Imbert ) разработал газогенератор для использования на транспорте. В его генераторе полученные газы перед поступлением в камеру сгорания двигателя очищались и обезвоживались. В 1931 году началось массовое производство генераторов Имберта. В конце тридцатых эксплуатировалось около 9 000 автомобилей, оснащённых газогенераторами, в основном в Европе.

Во Вторую мировую войну, как результат введения жёсткого нормирования ископаемого топлива, «дровомобили» стали обычным явлением во многих европейских странах. В одной только Германии к концу войны насчитывалось около 500 000 газогенераторных автомобилей. И не только личные легковые авто, но и грузовики, автобусы, тракторы, мотоциклы, катера и поезда оснащались блоками газификации древесины. Некоторые танки так же были снабжены генераторами древесного газа, но всё же для военных целей немцы предпочитали использовать жидкое синтетическое топливо.

В 1942 году (когда технология ещё не достигла пика применения), насчитывалось около 73 000 газогенераторных автомобилей в Швеции, 65 000 – во Франции , 10 000 – в Дании, почти 8 000 – в Швейцарии. В Финляндии в 1944 году было 43 000 единиц транспорта, оснащенного газогенераторными установками, из них: 30 000 – автобусы и грузовики, 7 000 – личный автотранспорт, 4 000 – тракторы и 600 – катера и лодки. «Дровомобили» были так же в Америке, в Азии и в Австралии. В общей сложности, во время войны, более одного миллиона автомобилей было оснащено блоками газификации древесины.

С послевоенной доступностью бензина, интерес к технологии был почти мгновенно потерян. К началу 1950-х годов в Западной Германии осталось примерно 20 000 «дровомобилей».

Рост цен на топливо привёл к возобновлению интереса к дровам как альтернативе традиционному автомобильному горючему. Десятки механиков-любителей по всему миру начали оснащать свои автомобили газогенераторами, причём большая часть этих современных «дровомобилей» собирается скандинавами.

В 1957 году правительство Швеции создало исследовательскую программу подготовки быстрого оснащения автомобилей генераторами древесного газа на случай внезапной нехватки нефти. Швеция не имеет запасов нефти, но имеет обширные леса, которые можно использовать в качестве топлива. Целью данного исследования была разработка улучшенной, стандартизированной установки, адаптированной для использования на всех видах транспорта.

Эти исследования, поддержанные автопроизводителем «Вольво», привели к накоплению больших теоретических знаний и практического опыта работы с автотранспортом и тракторами; пробег транспорта оснащённого экспериментальными установками газификации составил более 100 000 километров. Результаты были суммированы в документе ФАО от 1986 года, в котором также были проанализированы аналогичные эксперименты в других странах. Шведские и, в частности, финские механики-любители использовали эти данные для дальнейшего развития технологии.

Генератор древесного газа внешне выглядит как большой водонагреватель, он может быть размещён на прицепе, в багажнике, в кузове или на платформе в передней или задней части автомобиля (наиболее популярный вариант в Европе). Во времена Второй мировой войны, некоторые автомобили были оснащены встроенными газогенераторами.

Топливом в основном служат дрова или древесная щепа. Уголь тоже может быть использован, но при этом теряется до 50% энергии, содержащейся в исходной биомассе. С другой стороны, древесный уголь обладает лучшей энергоёмкостью, а значит и время пробега автомобиля до следующей закладки топлива – увеличивается. В принципе, любой органический материал может быть использован. В сороковых годах использовались и уголь, и торф, но всё же древесина оставалась основным видом топлива.

Автомобиль построенный в Голландии Ёханом в 2008 году – одна из успешных моделей, работающая на древесном газе. В то время как многие современные автомобили с установками газификации, кажется, прямиком прибыли из Мэд Макса, «Вольво 240» голландца оснащена современно-выглядящей системой, изготовленной из нержавеющей стали.

Ёхан твёрдо верит в перспективность использования генераторов древесного газа; прежде всего для стационарных целей, таких как отопление, выработка электроэнергии или даже производства пластмасс. «Вольво» же предназначен для демонстрации возможностей технологии. Тем не менее, автомобили, работающие на древесном газе, – это транспорт для идеалистов и на время кризиса.

Что такое генераторная установка? | BigRentz

Когда вы начнете изучать варианты резервного питания для вашего бизнеса, дома или на рабочем месте, вы, скорее всего, встретите термин «генераторная установка». Что такое генераторная установка? И для чего это используется?

Вкратце, «генераторная установка» – это сокращение от «генераторная установка». Его часто используют как синонимы более известного термина «генератор». Это портативный источник питания, в котором для выработки электроэнергии используется двигатель.

Для чего используется генераторная установка?

Современное общество не может работать без электричества.От Wi-Fi и связи до освещения и климат-контроля – предприятиям и домам для нормальной работы требуется постоянный поток электроэнергии.

Генераторные установки

могут добавить дополнительный уровень безопасности в случае отключения электроэнергии или отключения электроэнергии. Резервные генераторы могут поддерживать работу критически важных систем в медицинских учреждениях, на предприятиях и в домах в случае отключения электроэнергии.

Генераторы

также могут обеспечивать автономное электроснабжение в удаленных местах вне электросети. К ним относятся строительные площадки, кемпинги, сельские районы и даже шахты глубоко под землей.Они позволяют людям использовать силу, чтобы строить, исследовать или жить вдали от проторенных дорог.

Есть разные типы электрогенераторов. Все они имеют одинаковые компоненты, требуют определенного вида топлива и установлены в базовой раме. Но есть и некоторые ключевые отличия.

Как работает генераторная установка?

Электрические генераторы работают так же, как и автомобили. У них есть «первичный двигатель» (двигатель) и генератор переменного тока.

  • Двигатель преобразует топливо, такое как бензин, дизельное топливо, биогаз или природный газ (химическая энергия), в механическую энергию.
  • Механическая энергия вращает ротор генератора переменного тока для создания электрической энергии.
  • Генераторы переменного тока состоят из двух частей: ротора и статора. Когда ротор вращается, магнитное поле между ротором и статором создает напряжение (электромагнитная индукция).
  • Когда напряжение на статоре подключается к нагрузке, создается стабильный электрический ток.

Многие дома и предприятия считают использование генераторов бесценным, потому что, когда вырабатывается энергия, ее можно сразу же использовать.Генераторы эффективно устраняют любые перебои в работе из-за потери мощности.

Генераторы переменного и постоянного тока: в чем разница?

Все генераторы используют электромагнитную индукцию, но разные установки могут производить два разных вида электроэнергии – переменный ток (AC) или постоянный ток (DC).

Подавляющее большинство генераторов – это генераторные установки переменного тока, но стоит знать разницу.

Как следует из названия, переменный ток меняет направление.Он колеблется взад и вперед десятки раз в секунду. Электричество переменного тока может передаваться с высоким напряжением, что делает его полезным для доставки на большие расстояния по электрической сети. Трансформатор «понижает» напряжение для использования в меньших масштабах. Генераторы переменного тока используются для запуска небольших двигателей, бытовой техники, компьютеров и оргтехники.

Постоянный ток протекает в одном направлении при более низком напряжении. Он остается неизменным от генератора до конечного пункта назначения. Генераторы постоянного тока питают большие электродвигатели (например, системы метро), батареи и солнечные элементы, а также светодиодные фонари.

Из каких компонентов состоит генераторная установка? Генераторные установки

обычно состоят из следующих компонентов:

  • Двигатель / мотор. Основной компонент генераторной установки, он работает на топливе. Хорошие двигатели достаточно сильны, чтобы удовлетворять спрос и работать в неблагоприятных условиях (например, в плохую погоду).
  • Генератор. Этот компонент преобразует механическую энергию в электричество; без него нет силы.
  • Панель управления. Он действует как «мозг» генераторной установки, контролируя и регулируя все другие компоненты.
  • Топливная система. Этот компонент состоит из резервуаров для хранения и шлангов, по которым топливо подается в двигатель.
  • Регулятор напряжения. Управляет величиной напряжения, которое генерирует генераторная установка, и преобразует ток переменного тока в ток постоянного тока.
  • Базовая рама / корпус. Базовая рама поддерживает генератор и удерживает компоненты вместе. Он также служит антивибрационной системой и системой заземления и может содержать или не размещать топливный бак. Его можно установить на колеса, чтобы сделать его портативным.
  • Шнуровой механизм или аккумулятор. Первоначальная искра необходима для запуска процесса сгорания портативного генератора. Обычно это происходит либо через механизм тянущего троса (например, газонокосилка), либо через стартер, работающий от батареи постоянного тока.
  • Ручной или автоматический переключатель резерва. Передаточный переключатель направляет мощность между основным источником (сетевое питание) и вспомогательным (генератором). Это поддерживает постоянный поток электроэнергии и предотвращает опасные сбои.
  • Дефлектор или корпус . Этот контейнер, часто изготовленный из нержавеющей стали, снижает уровень шума, предотвращает коррозию и облегчает воздушный поток для охлаждения двигателя.

Генераторы не требуют интенсивного обслуживания, но важно понимать их внутренние механизмы. Таким образом, вы можете выполнять профилактическое и общее обслуживание по мере необходимости, а также знать, как заказывать запасные части.

Какие бывают типы генераторных установок? Генераторы

бывают разных размеров и могут использовать разные источники топлива.Ниже приведены различные топливные системы генератора, включая плюсы и минусы каждой из них.

Генераторы бензиновые

Бензиновые генераторы – самый популярный вариант, потому что бензин легко доступен. Газовые генераторные установки также имеют низкую цену и чрезвычайно портативны.

Однако время использования газового генератора может быть недолгим и расходовать топливо неэффективно. Бензин годен при хранении около года. Но он также легко воспламеняется, что может создать опасность в определенных условиях.

Дизель-генераторы

Дизельные двигатели мощнее бензиновых. Дизельное топливо также менее легко воспламеняется, и его доступность широко распространена. При правильном обслуживании дизельные генераторы могут прослужить долго.

Основные недостатки заключаются в том, что дизельное топливо годится только около двух лет, а его широкое использование обходится дорого. Дизельные двигатели также создают большие выбросы.

Генераторы биодизеля

Биодизельное топливо представляет собой смесь дизельного топлива и других биологических источников, таких как животный жир или растительное масло.Поскольку он горит с меньшими выбросами нефти, он более экологичен, создает меньше отходов и уменьшает следы ископаемого топлива.

Однако большим недостатком является уровень шума, связанный с биодизельными двигателями.

Опции с низким уровнем выбросов

Генераторы

также могут работать с опциями с низким уровнем выбросов, включая природный газ, пропан или солнечную энергию.

  • Природный газ широко доступен и доступен по цене, он может работать прямо из запасов сланца, что означает отсутствие дозаправки.Однако большой недостаток заключается в том, что генератор природного газа нелегко переносить и дорого устанавливать.
  • Пропан горит чисто и имеет длительный срок хранения, но при этом он легко воспламеняется. Стоимость установки выше, и эти генераторы сжигают в три раза больше топлива, чем те, которые работают на дизельном топливе.
  • Solar Генераторы заряжаются от солнца, поэтому следы ископаемого топлива отсутствуют, а работа проста. Недостатком здесь является ограниченное энергоснабжение.Кроме того, время зарядки медленное; если накоплено недостаточно заряда, нестабильная подача топлива может стать причиной сбоев.

Небольшие бытовые резервные генераторы обычно используют бензин, но более крупные промышленные генераторы обычно работают на дизельном топливе или природном газе.

Размеры и использование генераторной установки Генераторы

имеют различную выходную мощность и разную частоту вращения двигателя. Они могут стоять отдельно или соединяться со зданиями. Некоторые портативные генераторы имеют колеса или устанавливаются на прицепах, поэтому их можно буксировать из одного места в другое.

При выборе генераторной установки вам необходимо изучить такие характеристики, как выработка электроэнергии, топливная эффективность, надежность и прочная конструкция.

Также полезно знать выходную электрическую мощность: выходная мощность измеряется в ваттах или киловаттах. Генераторы большего размера могут производить больше электроэнергии, но имеют более высокий расход топлива; однако генераторы меньшего размера могут не производить необходимую мощность.

Четкое понимание ваших требований к электропитанию – ключ к выбору качественной генераторной установки.

Преимущества генераторных установок

Если ваш дом или бизнес обслуживается устаревшими электростанциями или линиями, то вы знакомы с перебоями в работе. То же самое, если вы живете или работаете в регионе, подверженном экстремальным погодным явлениям, таким как ураганы или метели.

Потеря мощности означает, что вы фактически отключились. Для предприятий любые перебои или простои могут привести к серьезным финансовым потерям.

Следовательно, использование генераторной установки дает множество преимуществ.

  • Может использоваться как основной или резервный источник питания.
  • Служит основным источником энергии для строительных проектов или удаленных операций.
  • Работает как аварийный источник питания в случае неожиданного отключения электроэнергии в сети.
  • Обеспечивает защиту от сбоев, которые могут вызвать сбой.
  • Обеспечивает экономию в регионах, где пиковые потребности в сети высоки и, как следствие, дороги.

Аварийные генераторы электроэнергии обеспечивают надежную подачу электроэнергии для предотвращения финансовых потерь и нарушений безопасности.Они могут даже предотвратить гибель людей в больницах и домах престарелых. Большинство предприятий полагаются на генераторы, чтобы уменьшить негативные последствия отключения электроэнергии. Это помогает им продолжать работать даже в трудные времена.

Наличие генераторной установки на случай перебоя в электроснабжении может быть спасением, иногда буквально. И даже в ситуациях, которые не совсем опасны для жизни и смерти, генераторная установка может обеспечить бесперебойную работу без перебоев.

Похожие сообщения











Что такое генераторная установка и для чего она используется?

Проще говоря, генераторная установка или «генераторная установка» – это портативное оборудование, состоящее из двигателя и генератора переменного тока / электрического генератора, используемого для выработки энергии.Генераторы часто используются в развивающихся районах и других областях, не подключенных к электросети; места, где часты отключения электроэнергии; и / или где отключение питания может вызвать особенно серьезные или опасные проблемы, например, глубоко в шахте. Они могут служить основным источником энергии или дополнительным источником энергии, возможно, в часы пиковой нагрузки.

APR Energy предлагает один из крупнейших парков мобильных контейнерных генераторов в мире. Вот их более подробный взгляд.

Как работает генераторная установка?

Генераторная установка представляет собой комбинацию первичного двигателя (обычно двигателя) и генератора переменного тока.Двигатель преобразует химическую энергию топлива в механическую. Эта механическая энергия используется для вращения ротора генератора переменного тока; преобразование механической энергии в электрическую. Генератор состоит из двух основных частей; ротор и статор. Вращение ротора генератора переменного тока через магнитное поле между ротором и статором создает напряжение на статоре генератора за счет явления электромагнитной индукции. Когда напряжение на статоре подключено к нагрузке, течет электрический ток, и генератор вырабатывает энергию.

В итоге генераторная установка создает портативные источники энергии. Когда генератор используется вместе с дизельным двигателем, как только один пример, это создает дизельный генератор.

Дополнительные элементы генераторной установки

Генераторная установка обычно размещается в шумопоглощающем корпусе для уменьшения шума в окружающих областях и обычно изготавливается из стали, нержавеющей стали или алюминия. Эта кабина должна выдерживать коррозию и эффективно управлять процессом охлаждения двигателя.Базовая рама содержит антивибрационную систему; он также может содержать топливный бак или бак может быть отдельным. Другие элементы включают в себя панель управления и автоматический переключатель на случай, если необходимо чередовать энергию между основным источником и вспомогательным.

Преимущества генераторной установки

Преимущества хорошо построенной генераторной установки промышленного качества многочисленны, в том числе:

  • Надежность
  • Топливная эффективность
  • Масштабируемый дизайн
  • Прочная конструкция
  • Автоматическое или ручное включение
  • Автоматический контроль загрузки
  • Местное или дистанционное управление
  • Низкие выбросы

Вот подробности.Выбирая генераторный модуль APR Energy, вы можете рассчитывать на дизельные и газовые модули, в которых используются новейшие технологии поршневых двигателей с превосходной эффективностью и значительной экономией топлива, а также улучшенной стабильностью частоты и напряжения. Наши генераторы легко транспортировать по суше, морю или воздуху, они размещаются в стандартном контейнере ISO 12,2 м (40 футов). Чтобы обеспечить быструю установку и ввод в эксплуатацию по всему миру, наша конструкция упаковки имеет минимальное количество интерфейсов. Эти блоки можно объединить в 5 масштабируемых.Блоки мощностью 5 МВт могут облегчить быструю установку до 300 МВт и более.

Дополнительные преимущества генераторных установок APR Energy:

  • Наши модули поддерживают широкий спектр приложений для коммунальных / промышленных предприятий энергетики
  • Эти прочные и надежные модули имеют минимальный вес
  • Распределительное устройство для параллельного подключения к электросети позволяет выполнять параллельное включение в автоматическом или ручном режиме
  • В наших модулях есть система автоматического управления нагрузкой для:
    • Общая нагрузка
    • Мягкая загрузка / разгрузка
    • Коэффициент мощности или регулировка VAR
    • Поддержка напряжения в рабочем режиме
  • Автоматическая работа может быть запущена локально или удаленно с помощью системы SCADA
  • Эти модули генераторной установки имеют постоянную регистрацию данных двигателя, которая:
      • Служит важным элементом системы управления
      • Определяет график работ по техобслуживанию на объекте
      • Предлагает параллельную работу в автономном режиме с другими силовыми модулями
      • Имеет автономные рабочие возможности с локальным или дистанционным запуском, управлением мощностью и синхронизацией

Генератор, работающий на природном газе, и дизельный генератор

Газовый силовой модуль APR Energy – это высокоэффективный выбор, установка и ввод в эксплуатацию возможны всего за 30 дней.Технические характеристики при 50 Гц включают:

  • Длительная выходная мощность 1475 кВт
  • Частота вращения двигателя 1500 об / мин
  • Трехфазное напряжение: 400 В / 230 В
  • Размер: 12,2 x 2,5 x 2,9 м (ДхШхВ)
  • CAT (R) G3516C Газовый двигатель с низким уровнем выбросов
  • Предназначен для диапазона метанового числа 55-100

Этот модуль, работающий на природном газе, обеспечивает высоконадежную и экономичную энергию для поддержки быстрой подачи электроэнергии с автоматическим контролем нагрузки. Вы можете использовать энергию несколькими способами: непрерывно при базовой нагрузке или только в часы пик, используя автоматическое или ручное параллельное подключение через наше распределительное устройство для параллельного подключения к электросети.

Этот модуль может поддерживать широкий спектр приложений по производству электроэнергии для промышленных и коммунальных нужд, даже в экстремальных условиях и / или в удаленных местах. Эта система была разработана для оптимальной работы с природным газом из трубопроводов низкого давления с низкими выбросами. Вы можете найти значительно больше информации о характеристиках и преимуществах наших газовых генераторов.

Дизельный силовой модуль APR Energy также является высокоэффективным выбором, его установка и ввод в эксплуатацию также возможны всего за 30 дней.Технические характеристики при 50 Гц включают:

  • длительная выходная мощность: 1400 кВт
  • Обороты двигателя: 1500 об / мин
  • Трехфазное напряжение: 400 В / 230 В
  • Размер: 12,2 x 2,5 x 2,9 м (ДхШхВ)
  • компактный четырехтактный дизельный двигатель CAT® 3516B с турбонаддувом

Технические характеристики при 60 Гц включают:

  • длительная выходная мощность: 1640 кВт
  • Обороты двигателя: 1800 об / мин
  • Трехфазное напряжение: 480 В / 277 В
  • Размер: 12,2 x 2,5 x 2,9 м (ДхШхВ)
  • компактный четырехтактный дизельный двигатель CAT® 3516B с турбонаддувом

Наши дизельные генераторные установки обладают всеми преимуществами газовых генераторов: они экономичны, высоконадежны и способны обеспечивать ускоренную подачу электроэнергии для промышленных и коммунальных нужд в экстремальных условиях и / или в удаленных местах.Здесь вы найдете дополнительную информацию об особенностях и преимуществах наших дизельных генераторов.

Пример использования генераторной установки № 1: временное энергоснабжение в коммунальном секторе Мьянмы

APR Energy была первой компанией, поставляющей электроэнергию в Мьянму после введения санкций. Эта страна, второй по величине производитель природного газа в Юго-Восточной Азии, столкнулась с трудностями из-за сочетания санкций и нехватки иностранных инвестиций. Это привело к неразвитой инфраструктуре, а также к стареющим электростанциям. Семьдесят пять процентов населения не имели доступа к электричеству, и потенциал страны по производству энергии не использовался.

Соединенные Штаты и несколько стран Европейского Союза сняли санкции в 2012 году, а в 2014 году APR Energy подписала соглашение о производстве электроэнергии с правительством Мьянмы. В течение 90 дней мы установили одну из крупнейших в стране тепловых станций, 70 процентов рабочих которой были получены из местных источников. Это получило награду Top Plants 2015.

Причины, по которым Myanmar Electric Power Enterprise выбрало нашу компанию для оказания услуг по генераторным установкам, включают нашу способность:

  • быстрое проектирование и крупномасштабное развертывание электростанций
  • эффективно оптимизировать внутренние ресурсы
  • нанимает местных рабочих и обеспечивает ценное обучение
  • способствует экономическому развитию общины

Дополнительную информацию об этом примере использования генераторной установки, работающей на природном газе, можно найти здесь.

Пример использования генераторной установки № 2: Промышленная горнодобывающая промышленность в Гватемале

Используя дизельные генераторы, APR Energy обеспечила надежным энергоснабжением второй по величине серебряный рудник в мире, получив признание безопасности 2015 года, поскольку мы предоставили масштабируемое решение от разработки до эксплуатации. Проблемы, с которыми мы столкнулись, включали сельский, горный район расположения рудника, а также строгие требования по охране окружающей среды и безопасности, поскольку мы спроектировали и установили систему, обеспечивающую бесперебойную подачу электроэнергии в жизненно важной ситуации.На руднике Эскобаль в Минера-Сан-Рафаэль потребовались ускоренные решения по энергоснабжению отчасти из-за проблем с полосой отвода.
Причины, по которым были выбраны наши услуги по обслуживанию генераторов, включали нашу способность:

  • первоначально обеспечивают 2-3 МВт, которые требовались для строительства рудника
  • увеличивает мощность до 15,5 МВт надежного электричества, что крайне важно для шахтеров, работающих под землей, которым необходимы жизнеобеспечивающие системы водоснабжения и вентиляции
  • поддерживать строгие стандарты
  • обучать работников лучшим методам охраны труда, техники безопасности и охраны окружающей среды

Подробнее об этом примере использования дизельной генераторной установки.

Энергетические потребности генераторной установки широко варьируются в зависимости от географических и промышленных потребностей, а также других факторов. Чтобы обсудить ваши собственные уникальные требования, свяжитесь с APR Energy онлайн, чтобы обсудить наши услуги по генерации, или позвоните по телефону +1 (904) 223 2278.

Генераторы природного газа – Огайо CAT Prime / Непрерывный / Резервный генератор

Зачем покупать генератор природного газа?

Покупка газового генератора непрерывного действия / заправки / резервирования означает, что вам не нужно беспокоиться о наличии топлива под рукой.Если у вас есть возможность использовать генератор природного газа, вы можете получить выгоду от повышения эффективности, снижения эксплуатационных расходов и снижения выбросов. Генераторы природного газа также не производят резких запахов, связанных с дизельным топливом.

Наш инвентарь

Огайо CAT предлагает генераторы природного газа мощностью от 30 кВт до 8150 кВт. Генераторы Cat обеспечивают необходимую мощность при низком расходе топлива и сокращении долгосрочных эксплуатационных расходов. Независимо от типа применения, требований к питанию или нормативной базы, наша опытная команда поможет вам найти на складе для продажи экологически чистый генератор природного газа.

Преимущества выбора промышленного или розничного генератора, произведенного Caterpillar, включают:

  • Простой в освоении пользовательский интерфейс и точные элементы управления, повышающие эффективность
  • Высокоэффективное производство электроэнергии на газообразном топливе низкого давления
  • Новейшие системы зажигания и управления соотношением воздух / топливо для экологически чистых операций

Мы продаем более крупные генераторы природного газа для промышленного использования, коммерческих зданий и других тяжелых условий эксплуатации.

Генераторы для продуктовых магазинов, домов престарелых и торговых центров

Используйте наши газовые генераторные установки как для основных, так и для резервных генераторов. Розничные генераторы малого и среднего размера идеально подходят для питания витрин, домов престарелых, продуктовых магазинов, торговых центров и других объектов с существующим подключением к природному газу.

Покупайте с уверенностью через SOURCEWELL (ранее NJPA)

Компания Caterpillar с гордостью поддерживает контракт Sourcewell № 120617-CAT .

Откройте для себя путь покупки, который предлагает качественные продукты, услуги и поддержку. Компания Caterpillar гордится тем, что является поставщиком Sourcewell, и рада возможности предоставить своим участникам решения по энергоснабжению.

При работе с CAT в Огайо участники Sourcewell могут выбирать из ряда дизельных и газовых генераторов CAT мощностью от 40 кВт до 4000 кВт в соответствии с вашими конкретными потребностями. Вы также получите непревзойденную поддержку продукта и обслуживание, которое вы можете ожидать от компании Огайо CAT. Контракт № 120617-CAT предлагает Бесплатное 4-летнее Расширенное обслуживание для соответствующих требованиям дизельных генераторов и генераторов природного газа.

Как участник Sourcewell, вы будете. . .
  • Избавьтесь от времени и средств, связанных с процессом закупок, за счет заключения национального тендерного контракта.
  • Не тратьте время на ожидание ответов
  • Избегайте непредсказуемости сценария с низкой ставкой
  • Получите возможность приобрести качественное оборудование по более высокой цене
  • Работайте напрямую с Огайо CAT, чтобы удовлетворить ваши потребности.

Вы не являетесь участником Sourcewell? Присоединяйтесь бесплатно, посетив Sourcewell. Станьте участником.
Представитель Ohio CAT Power Systems может помочь определить, подходит ли вам генераторная установка, работающая на природном газе. У нас есть офисы в Кливленде, Колумбусе, Цинциннати, Дейтоне и Толедо. Обратитесь к ближайшему торговому представителю Power Systems для получения дополнительной информации: Power Systems Locations

Generac Industrial Power – Характеристики природного газа

Правильный источник топлива, который действительно может снизить капитальные затраты

Дизель-генераторы

заработали и сохранили давнюю репутацию рабочей лошадки для аварийного резервного питания – громоздкие, шумные, немного вонючие, но в целом довольно надежные.

Однако последние достижения в области технологий природного газа начинают свергать доминирование дизельного топлива. Генераторы природного газа – тише, чище и эффективнее – представляют собой элегантную и все более популярную альтернативу дизельному топливу. Они быстро меняют определение электроэнергетики, во многом так же, как Tesla и электромобили изменили определение автомобильной промышленности.

Экологические преимущества природного газа по сравнению с дизельными генераторами очевидны. Природный газ горит значительно чище; снижает выбросы серы, азота и углекислого газа в атмосферу; и не имеет сильного запаха дизельного топлива.Однако одних этих выгод недостаточно, чтобы оправдать систему природного газа, если затраты непомерно высоки, как это было в прошлом.

Однако с помощью современных технологий системы природного газа, такие как линия газообразных продуктов от Generac Industrial Power, одного из крупнейших поставщиков оборудования для выработки электроэнергии в Северной Америке, фактически способны снизить капитальные затраты в течение срока службы системы по сравнению с традиционными дизельными генераторами.

В этой статье будут освещены преимущества генераторных установок, работающих на природном газе, показано, как эти преимущества сокращают капитальные затраты, и обсуждены способы совместной работы с партнером по технической поддержке, таким как Generac, для адаптации системы к потребностям вашего конкретного приложения.

Природный газ – чистый и надежный

Работа с природным газом была несколько проблематичной до тех пор, пока несколько лет назад новые технологии не повысили долговечность и надежность этих генераторных установок.

Генераторы природного газа имеют сравнительно ограниченную выходную мощность. Это означает, что мощность отдельного генератора природного газа обычно не может сравниться с мощностью своего дизельного аналога. Однако, когда вы устанавливаете несколько генераторов природного газа вместе в параллельной конфигурации или генераторной установке, они не только могут производить сравнимую или даже большую мощность, но также предлагают гибкость, масштабируемость и многочисленные дополнительные преимущества, подробно описанные ниже.

  • Простая выдача разрешений: Природный газ – это чистое горючее, не требующее чрезмерных испытаний или разрешений. Высокий уровень выбросов, производимых дизельными генераторами, часто затрудняет получение разрешения на контроль качества воздуха.

  • Длительное время работы во время отключений: Поскольку природный газ поставляется коммунальным предприятием по подземным трубопроводам, погодные условия на него редко влияют, а поток топлива в значительной степени безопасен – они часто могут работать в течение недель и месяцев.Для дизельных генераторов подача топлива обычно заканчивается через три дня. Во время кризиса поставки топлива часто задерживаются или вообще отсутствуют.

  • Низкие эксплуатационные расходы: В дизельных генераторах необходимый дизельный газ с низким содержанием серы необходимо повторно кондиционировать или полировать каждые 12–16 месяцев, чтобы примеси не влияли на поток топлива. Это не проблема с природным газом.

  • Экономичные двигатели: Автомобильные двигатели с искровым зажиганием доступны в больших объемах, что делает их более экономичными, чем дизельные двигатели аналогичного размера.

  • Надежное снабжение топливом: С дизельным топливом зимние бури или неожиданные бедствия могут нанести серьезный ущерб работе по всей стране. Если грузовики с припасами задерживаются, это может сильно повлиять на производство.

  • Общая экологичность: Многие компании становятся очень «зелеными» и учитывают этот аспект в каждой части нового строительства или при реконструкции. Природный газ – это самое чистое горящее ископаемое топливо на сегодняшний день; он производит наименьшее количество выбросов и имеет гораздо меньший углеродный след.Генераторы природного газа также избегают проблем с локализацией топлива, его утечки и экологических проблем, связанных с хранением дизельного топлива.

Меньшая общая стоимость

В прошлом генераторы природного газа стоили очень дорого. Однако сегодня технология стала намного доступнее и доступнее. Фактически, многие генераторы, работающие на природном газе, теперь предлагают значительно более низкую совокупную стоимость владения (TCO), чем их дизельные аналоги.

Технологические усовершенствования повышают эффективность, что приводит к снижению затрат практически во всех аспектах жизненного цикла продукта – от установки до обслуживания и затрат на топливо.Некоторые из преимуществ сокращения первичных затрат подробно описаны ниже.

  • Капитальные вложения: Возможность добавления дополнительных параллельных генераторов в вашу систему природного газа с течением времени может означать значительное сокращение ваших первоначальных капитальных вложений. Нет необходимости устанавливать больше мощности, чем требуется в настоящее время, поскольку в будущем может быть добавлено больше модулей по мере роста бизнеса или увеличения требований к питанию.

  • Стоимость установки: Капитальные вложения для определения и установки двух параллельно включенных генераторов меньшей кВт по сравнению с одним генератором большей кВт могут быть аналогичными.Тем не менее, параллельные блоки часто имеют преимущество в большей поддержке установки со стороны поставщика, что частично компенсирует первоначальные затраты. Их меньший вес облегчает их перемещение и установку на рабочих площадках, требуя меньшего и менее дорогого подъемного оборудования, а простая конструкция означает сокращение времени установки.

  • Стоимость топлива: В Соединенных Штатах стоимость природного газа значительно ниже, чем стоимость дизельного топлива. По данным У.S. В отчете Министерства энергетики о ценах на альтернативное топливо за апрель 2017 года средняя цена на природный газ в период с 1 по 17 апреля 2017 года по стране составляла 2,15 доллара за ГПЭ. Средняя цена на дизельное топливо в этот период составляла 2,55 доллара за галлон, что на 18% выше.

  • Стоимость обслуживания и ремонта: Один подключенный к сети блок может быть выведен из эксплуатации для обслуживания или ремонта, в то время как другие блоки остаются доступными в случае выхода из строя. Меньшие параллельно подключенные генераторы также можно хранить в более легкодоступных местах, например, на крышах домов или в гаражах.

Партнерство со знающим поставщиком

При рассмотрении системы природного газа важно найти инженера-партнера, который полностью понимает потребности вашего приложения и обладает продуктами, опытом, технологиями и ресурсами, которые помогут вам разработать лучшее и наиболее экономичное решение.

На протяжении более 50 лет компания Generac является движущей силой многих инноваций, произошедших в энергетической отрасли, особенно многих из недавних достижений в области технологий природного газа.Однако, помимо технологического лидерства, компания также обеспечивает комплексную поддержку продаж, проектирования, установки и обслуживания командой инженеров, проработавших в этой области на протяжении десятилетий. Многие коммерческие, промышленные и критически важные объекты полагаются на Generac не только как на поставщика, но и как на настоящего инженера-партнера.

Их практический опыт позволяет создавать решения, отвечающие реальным потребностям. Перед тем, как любой из генераторов Generac поступит в производство, инженеры оценивают, анализируют и тестируют каждый компонент до мельчайших деталей.Это включает в себя полный спектр звуковых испытаний, испытаний на долговечность и комплексный набор узкоспециализированных испытаний на производительность системы охлаждения, анализ крутильных колебаний, переходные характеристики и максимальный пуск двигателя и прочность конструкции.

Generac может предоставить вам целый ряд проверенных и надежных опций и настроить их в соответствии с вашими конкретными требованиями.

Как мы определили в этой статье, генераторные установки, работающие на природном газе, представляют собой лучшую альтернативу дизельному топливу во многих областях применения.Они чище, гибче, экономичнее и обладают рядом других преимуществ.

Дизель-генераторы хорошо отработали. Но, возможно, вам, наконец, пора бросить старую рабочую лошадку на пастбище и объединиться с таким производителем, как Generac, чтобы оценить ваши варианты использования природного газа и начать сокращать свои расходы.

Если у вас есть вопросы о газовых генераторах Generac или вы хотите узнать больше, посетите раздел поиска промышленных распределителей энергии Generac, позвоните нам по телефону 1-844-ASK-GNRC или напишите по электронной почте ASKGNRC @ generac.com, чтобы поговорить с техническим торговым представителем Generac. Обратите внимание на наши генераторы природного газа мощностью 50–350 кВт.


Статьи по теме
«Вернуться на страницу характеристик природного газа

Новая газогенераторная установка Cummins Onan мощностью 5,5 кВт обеспечивает экономичную, «зеленую» вспомогательную энергию для грузовиков коммерческого парка, работающих на КПГ

Работая на сжатом природном газе, эта новая сверхтихая генераторная установка обеспечивает 120-вольтную вспомогательную электрическую энергию и дополнительную гидравлическую энергию для грузовых автомобилей, грузовиков для пищевых продуктов и других коммерческих автомобилей, работающих на КПГ

МИННЕАПОЛИС – Компания Cummins Onan представила новый компактный двигатель 5.Генераторная установка мощностью 5 кВт предназначена для работы на сжатом природном газе (КПГ) и обеспечивает дополнительную электрическую и дополнительную гидравлическую энергию для растущего числа коммерческих грузовых автомобилей, работающих на КПГ. По сравнению с бензином, топливо обеспечивает меньший углеродный след и более низкие эксплуатационные расходы на галлон в эквиваленте. Это делает КПГ идеальным для небольших служебных грузовиков, используемых телекоммуникационными компаниями, коммунальными службами, продовольственными грузовиками и другими коммерческими предприятиями, связанными с экономией топлива и устойчивой деловой практикой.Этим автопаркам требуется вспомогательное питание на 120/240 В для работы дрелей, вентиляторов, насосов и другого оборудования, мощность которого до сих пор была доступна только от бензиновых генераторных установок, для которых требовался отдельный топливный бак.

«Новая генераторная установка серии 5500 NG была разработана на основе линейки компактных и бесшумных генераторов, которые Cummins Onan поставляла на рынок транспортных средств для отдыха в течение 15 лет», – сказал Эрик Болленсен, инженер по применению в Cummins Onan. «Мы модифицировали проверенный временем двигатель, чтобы он соответствовал требованиям к свойствам природного газа в качестве топлива, сохранив при этом проверенные характеристики двигателя.«Агрегаты предназначены для непрерывной работы от надежного вспомогательного источника питания.

«Спрос на генераторы природного газа неуклонно растет, поскольку многие корпорации ищут экономичные способы сокращения выбросов углерода», – продолжил Болленсен. Только в 2014 году сети AT&T и Verizon задействовали в своих автопарках более 8000 автомобилей, работающих на КПГ. Многие другие компании, работающие в сфере телекоммуникаций и других транспортных средств, также заявляют о своей приверженности снижению выбросов парниковых газов.

Новый генератор Cummins Onan производит 5.5 кВт при 60 Гц, 120/240 В, однофазный, работает на чистом и эффективном сжатом природном газе. Эти установленные генераторы обеспечивают мгновенную мощность и дополнительное удобство использования комбинированного топливного бака генератора и транспортного средства. Признанный самой тихой генераторной установкой с наименьшей вибрацией в своем классе, новый агрегат оснащен закрытым глушителем и катализаторами выхлопных газов, которые помогают ему соответствовать всем применимым стандартам качества воздуха EPA и CARB. Он также имеет возможность самодиагностики, чтобы упростить поиск и устранение неисправностей, и цифровое регулирование напряжения для обеспечения стабильности напряжения и частоты.В качестве опции агрегат доступен с гидравлическим валом отбора мощности для управления небольшими кранами, сварочным оборудованием и ковшовыми подъемниками с одновременной подачей электроэнергии.

«Эта генераторная установка работает очень тихо даже при полной нагрузке», – сказал Болленсен. Первоначально разработанный для рынка жилых автофургонов, где бесшумная работа имеет первостепенное значение, уровень звука составляет всего 69,0 дБ (A) при измерении с расстояния 10 футов. На новую генераторную установку предоставляется двухлетняя ограниченная гарантия и пятилетняя гарантия на привод, а также ее поддерживает дилерская сеть Cummins, крупнейшая сервисная сеть в отрасли.

Для получения дополнительной информации посетите http://now.cummins.com/naturalgas.

Работая на сжатом природном газе, эта новая сверхтихая генераторная установка обеспечивает 120-вольтную вспомогательную электрическую энергию и дополнительную гидравлическую мощность для грузовых автомобилей, грузовиков для пищевых продуктов и других коммерческих автомобилей, работающих на СПГ.

О компании Cummins Power Generation

Cummins Power Generation, дочерняя компания Cummins Inc. (NYSE: CMI), является мировым лидером, занимающимся повышением доступности и надежности электроэнергии во всем мире.Обладая более чем 90-летним опытом, глобальная сеть дистрибьюторов компании в более чем 190 странах предлагает инновационные решения для любых потребностей в электроэнергии – коммерческих, промышленных, рекреационных, аварийных и жилых.

Cummins Контактное лицо:

Крейг Гельдерман
Cummins Power Generation

[email protected]

Контактное лицо агентства:

Лия О’Фаллон

Creative Communications

лофаллон @ cccinc.com

5 фактов о двухтопливном и двухтопливном топливе, которых вы не знали – новые и подержанные генераторы, агрегаты и двигатели | Хьюстон, Техас

1. Что такое биотопливо

В двухтопливной системе используются два типа топлива, но эти топлива не смешиваются во время работы. Двигатель может переключаться между двумя режимами, поэтому он всегда использует наиболее эффективный вид топлива для текущих условий.Некоторые из этих двигателей автоматически управляются регулятором, который переключается между двумя типами топлива, когда этот конкретный вид топлива является наиболее эффективным.

Другие двухтопливные двигатели позволяют оператору машины переключаться между двумя видами топлива по желанию. Эти двигатели могут использовать любое топливо исключительно при отсутствии другого источника топлива, но будут работать менее эффективно, когда подходящее топливо недоступно.

Некоторые двухтопливные генераторы используют пары низкого давления (пары пропана) и природный газ в качестве двух источников топлива.Другие переключаются с работы на природном газе (сжатом или жидком) и бензине или природном газе и дизельном топливе. Некоторые виды топлива лучше всего подходят для определенных применений – двухтопливные автомобили могут быть разработаны для работы на обычном газе и природном газе, в то время как в двухтопливных двигателях, используемых в промышленности, используется дизельное топливо и сжиженный газ.

2. Что такое двойное топливо

Двухтопливная система способна использовать два вида топлива одновременно в смеси. Обычно он запускается на одном типе топлива, и регулятор, встроенный в систему, постепенно добавляет вторичный источник топлива, пока не будет достигнута оптимальная смесь двух видов топлива для эффективной работы.

Как и двухтопливная система, двухтопливный двигатель обычно может работать только на одном из источников топлива при отсутствии другого. Однако во многих двухтопливных двигателях для запуска двигателя требуется определенное топливо.

Например, двухтопливный генератор запускается с использованием дизельного топлива и постепенного добавления смеси природного газа. Дизель воспламеняется при температуре всего 500-700 градусов по Фаренгейту.

Однако природный газ не загорится, пока температура не достигнет 1150–1200 градусов по Фаренгейту.Таким образом, после запуска двигателя он может работать только на природном газе или только на дизельном топливе. Но природный газ нельзя использовать для запуска двигателя, потому что дизельное топливо необходимо для повышения температуры до точки, при которой природный газ воспламенится.

3. Как путаются термины

Путаница между терминами «двухтопливный» и «двухтопливный» проистекает из того, как их использует федеральное правительство. Министерство энергетики использует их противоположным образом в большинстве отраслей. Определения, используемые в этой статье, используются Министерством энергетики и могут не применяться ко всем потребительским или промышленным товарам одинаково.

Но как только вы поймете концепции двухтопливной и двухтопливной систем, довольно легко определить, что означает конкретная система. Кроме того, двухтопливные системы и двухтопливные системы часто используются в различных приложениях, что дает нам еще один ориентир.

Проще говоря, когда вы покупаете двигатель, выясните, используется ли его топливо в смеси или по отдельности. Это ключ. Тогда вы поймете, с каким типом двигателя имеете дело. Убедитесь, что вы понимаете, может ли двигатель использовать какое-либо топливо для запуска двигателя, или вам нужны оба топлива для запуска двигателя.Кроме того, приобретите двигатель, специально разработанный для ваших конкретных целей.

4. Для чего нужно биотопливо

Двухтопливные системы используются в различных продуктах, включая грили, системы отопления жилых помещений, духовки и плиты. Но наиболее распространены два приложения:

Двухрежимные автомобили

Гибридные автомобили присутствуют на рынке более двух десятилетий, но вы можете удивиться, узнав, что типичный газо-электрический формат – не единственный тип гибридных автомобилей.Любой автомобиль, который использует по крайней мере два различных типа мощности, квалифицируется как гибрид, что означает, что двухтопливные двигатели в транспортных средствах технически делают их гибридами. Тем не менее, может быть проще думать о них как о «двухрежимных» или просто «двухтопливных транспортных средствах».

На самом деле это наиболее популярное использование двухтопливной системы. Эти автомобили требуют двух отдельных топливных баков, питающих один двигатель. Например, гибридный автомобиль, который использует дизельное топливо + природный газ, впрыскивает дизельное топливо с эффективным ускорителем в двигатель до тех пор, пока не будет достигнута постоянная скорость, а затем двигатель переходит на более эффективный природный газ.Двухрежимные автомобили спроектированы таким образом, что при исчерпании одного источника топлива двигатель может продолжать работать на доступном источнике топлива.

Генераторы

Генераторы с двухтопливным двигателем могут быть потребительскими или промышленными. Дизельное топливо уже давно является предпочтительным видом топлива для крупных коммерческих генераторов, поскольку оно очень надежно, однако многие операторы заинтересованы в сокращении использования дизельного топлива из-за более строгих стандартов выбросов.Для многих генератор дизель + природный газ предлагает лучшее из обоих миров.

Преимущества двухтопливных двигателей

  • Эффективность: Самым большим преимуществом двухтопливной системы является то, что всегда используется наиболее эффективное топливо для данной задачи, поэтому эти системы значительно более эффективны при сверхурочной работе по сравнению с однотопливным двигателем, таким как газовый. -мощный автомобиль. Также упрощено хранение топлива, что дает больше времени между заправками дизельного топлива или уменьшает размер необходимых резервуаров для хранения.
  • Экологичность: Ограничение сжигания дизельного топлива, как это делает двухтопливный генератор или другой двигатель, может значительно снизить количество твердых частиц, CO2 и других выбросов, выбрасываемых в атмосферу. Они также могут способствовать улавливанию факельного газа, используя побочные продукты, которые в противном случае были бы потрачены впустую.
  • Экономия затрат: разница в расходах на топливо может составлять более 50% по сравнению с однотопливной системой.
  • Более длительное время работы : Во время продолжительных отключений электроэнергии операторы могут дольше поддерживать работу критически важных приложений, не будучи настолько зависимыми от дизельного топлива.

5. Для чего подходит двухтопливное топливо

Большинство двухтопливных двигателей используются в промышленности и реже используются в потребительских приложениях. Как и в случае с двухтопливными двигателями, наиболее популярными приложениями являются автомобили и генераторы:

Автомобили с гибким топливом

Двухтопливные автомобили или автомобили с «гибким топливом» особенно популярны в сфере грузоперевозок и автобусов, где обычно сочетаются дизельное топливо и природный газ для надежного и экономичного решения.Обычно наиболее эффективным использованием топлива в этом типе двигателя является смесь 75 процентов природного газа и 25 процентов дизельного топлива. Но компьютерная система или система фумигации контролируют соотношение природного газа и дизельного топлива в зависимости от нагрузки, чтобы двигатель работал с максимальной эффективностью.

Другие двухтопливные автомобили, такие как автомобиль, совместимый с E85, оборудованы для использования одного бензина или смеси бензина и этанола, метанола или биобутанола. В случае E85 оптимальная топливная смесь – это 85 процентов этанола и 15 процентов бензина.Реальные испытания не обнаружили различий в характеристиках автомобилей, работающих на бензине с октановым числом 87 и этаноле E85, в то время как последний, как полагают, сохраняет топливные системы чище, чем бензин, что потенциально снижает затраты на долгосрочное обслуживание.

Генераторы

Когда дело доходит до двигателей, не предназначенных для транспортировки, помимо буровых установок наиболее распространенным применением являются генераторы. Хотя многие портативные генераторы продаются бытовым потребителям как «двухтопливные», на самом деле они двухтопливные, потому что оператор должен выбрать, например, использовать ли пропан или бензин.Но промышленные двухтопливные генераторы работают с двумя видами топлива одновременно для достижения наиболее оптимальной производительности, что может иметь огромное влияние на чистую прибыль при увеличении масштабов до крупных предприятий.

Преимущества двухтопливных двигателей

  • Экономия затрат: Двухтопливные системы стоят значительно дороже, чем традиционные двигатели, обычно их цена на 15–30 процентов выше. Но поскольку двигатель может работать на одном топливе или на смеси видов топлива, его эксплуатация со временем обходится дешевле, поскольку позволяет выбрать то топливо, которое в настоящее время является самым дешевым.
  • Простое хранение: Двухтопливные двигатели устраняют необходимость в крупномасштабном хранении на месте дорогостоящего топлива, такого как дизельное топливо. Они также снижают затраты на обслуживание хранилища дизельного топлива.
  • Надежность: Если источник природного газа временно отключен, двигатель может продолжать работать только на дизельном топливе, изолируя его от любых колебаний в электросети, пока сохраняется подача дизельного топлива.
  • Гибкость: Двухтопливный двигатель позволяет использовать альтернативные виды топлива, такие как газ из сточных вод или свалочный газ, но при этом сочетать его с более традиционным топливом.
  • Экологичность : Как и двухтопливные системы, двухтопливные модели могут снизить вредные выбросы за счет сжигания меньшего количества дизельного топлива.

Узнайте, как комплект для модернизации двухтопливного двигателя от WPP может принести пользу вашим операциям сегодня

Подводя итог: обе системы используют два топлива, но двухтопливная система использует только одно топливо за раз, тогда как двухтопливная система использует смесь. Итак, если когда-нибудь возникнут сомнения относительно того, получаете ли вы двухтопливный или двухтопливный продукт, как определено Министерством энергетики, просто выясните, смешиваются ли топлива во время работы (двухтопливная) или система переключается с одного топлива на другое (двухтопливное).

INFINITI заявляет, что новая бензиновая система электромобилей (Nissan e-POWER) является центральным элементом стратегии электрификации

Будущие модели INFINITI предложат водителям выбор электрифицированных силовых агрегатов, поскольку бренд использует новые технологии для движения своих автомобилей. (Предыдущий пост.) К ним относятся полностью электрические системы, а также система электромобилей, генерируемая бензином (известная как e-POWER в Nissan, предыдущая публикация), в которой бензиновый двигатель вырабатывает электроэнергию, хранящуюся в батарее (серийный гибрид), который затем может быть доставлен на все четыре колеса через пару мощных электродвигателей.

Эти силовые агрегаты будут сочетаться со специализированными платформами и архитектурами транспортных средств, обеспечивая высокую производительность, уверенный запас хода и снижение воздействия на окружающую среду.

INFINITI заявляет, что новый бензиновый силовой агрегат электромобиля является центральным элементом его стратегии электрификации, и устанавливает новую схему силовых установок для многих будущих моделей бренда.

Предлагая характеристики вождения высокопроизводительного электромобиля, этот новый силовой агрегат устраняет два предполагаемых препятствия на пути потребления электромобилей потребителями – уверенность в запасе хода и практичность подзарядки.

Питание подается непосредственно на два электродвигателя большой мощности – по одному на каждую ось – от аккумуляторной батареи, расположенной под полом кабины, мощность которой варьируется от 3,5 до 5,1 кВтч в зависимости от модели.

Как у электромобиля, работающего на бензине, характер подачи энергии такой же захватывающий, плавный и безмятежный, как в электромобиле с высокими характеристиками аккумуляторной батареи. Благодаря мгновенным, возбуждающим откликам на нажатие педали акселератора электродвигатели обеспечивают максимальный крутящий момент от 0 об / мин.Мощные двигатели развивают общую мощность от 185 до 320 кВт (от 248 до 429 л.с.) в зависимости от автомобиля.

Ускорение, как и в любом электромобиле, является линейным, с более мощными версиями трансмиссии, способными разгоняться от 0 до 62 миль в час примерно за 4,5 секунды. Кроме того, водитель и пассажиры не испытают того же «шока переключения», который часто бывает при переключении передач в обычном гибридном автомобиле или автомобиле с ДВС (двигатель внутреннего сгорания).

Аккумуляторная батарея постоянно заряжается новым двигателем INFINITI MR15DDT.В этом трехцилиндровом 1,5-литровом бензиновом генераторе – первом применении этого двигателя – используется инновационная технология переменной степени сжатия VC-Turbo от INFINITI (предыдущая публикация), обеспечивающая плавно регулируемый уровень заряда аккумулятора.

Что особенно важно, использование бензинового генератора означает, что этим транспортным средствам никогда не нужно будет подключаться к сети на несколько часов для подзарядки. Действительно, у них вообще не будет порта для зарядки. Трансмиссии требуется лишь короткая остановка на заправке для заправки топливного бака, что устраняет опасения по поводу дальности полета.

Несмотря на высокий уровень предлагаемых характеристик, выбросы от автомобилей с новой силовой установкой EV, работающей на газе, будут значительно сокращены по сравнению с существующими автомобилями этой марки и другими автомобилями с ДВС, предлагающими аналогичную мощность и характеристики.

Важно отметить, что система разрывает историческую связь между ездой по городу и более высокими выбросами, поскольку генератору MR15DDT приходится меньше работать на низких скоростях для питания аккумуляторной батареи. Результатом являются более низкие выбросы и улучшенный запас хода в городских условиях, где выбросы для автомобилей с ДВС, как правило, выше.

Автомобили INFINITI, оснащенные силовым агрегатом электромобилей, работающим на газе, будут оснащены рядом передовых и первых в мире технологий и функций, обеспечивающих тихую и изысканную езду, присущую обычным электромобилям.

Одним из самых ярких нововведений является первая в мире независимая система крепления генератора MR15DDT под капотом, благодаря которой шум и вибрации двигателя практически незаметны при любой скорости движения. Чтобы сохранить спокойствие и умиротворение в салоне, двигатель и электродвигатели полностью герметизированы, чтобы уменьшить слышимый шум двигателя и вой двигателя.Независимая система опоры двигателя оснащена опорами, заполненными жидкостью, которые предназначены для поглощения любых дополнительных вибраций, которые в противном случае могут передаваться через корпус.

Сам двигатель MR15DDT VC-Turbo необычайно плавный, со значительно меньшим уровнем шума и вибрации по сравнению с обычными рядными двигателями. Это результат многорычажной конструкции, в которой поршневые шатуны во время цикла сгорания почти вертикальны, а не смещаются в сторону шире, как при традиционном вращении коленчатого вала.Это представляет собой идеальное возвратно-поступательное движение и полностью исключает необходимость использования балансирных валов в других рядных двигателях.

Ожидается, что внутри самой кабины газовые электромобили INFINITI будут предлагать активное шумоподавление, которое будет дополнительно противодействовать любым низкочастотным шумам от двигателя и дороги, создавая встречные звуковые волны. Это нейтрализует нежелательные шумы в салоне и обеспечивает более тихую и спокойную поездку.

Эти меры по изоляции двигателя и активному шумоподавлению означают, что система никогда не будет более слышимой, чем любой остаточный шум ветра и дороги, возникающий во время движения.В сочетании с бесшумными шинами, тщательно настроенными системами подвески, акустическим стеклом и другими мерами пассивной звукоизоляции автомобили, оснащенные новой силовой установкой EV, работающей на газе, обеспечат в высшей степени безмятежную езду в любых условиях.

За три десятилетия INFINITI заработала репутацию производителя силовых агрегатов, которые вдохновляют и расширяют возможности водителей. Наша новая газовая трансмиссия электромобилей представляет собой следующий шаг в наше электрифицированное будущее, выступая в качестве моста к полной электрификации и задавая тон нашим будущим автомобилям с нулевым и сверхнизким уровнем выбросов.Каким бы ни был двигатель, наши автомобили будут предлагать захватывающие, но безмятежные электрические характеристики и системы электронного полного привода, которые вселяют уверенность водителя.

—Эрик Риго, генеральный директор по стратегии и планированию продуктов INFINITI Motor Company

Варианты трансмиссии электромобилей с полностью электрическим или газовым двигателем будут сочетаться со специализированными платформами и архитектурами транспортных средств в соответствии с новым подходом INFINITI «две трансмиссии, одна платформа» к разработке моделей. Это приведет к созданию платформ, которые могут вместить оба типа трансмиссии, с высоким уровнем общности между ними.

Обеспечивая питание от аккумулятора высокопроизводительной системы e-AWD (электрический полный привод), платформы всех будущих электрифицированных автомобилей INFINITI будут спроектированы так, чтобы вмещать пару электродвигателей высокой мощности – один на передней оси, другой на тыл.