Газ водородсодержащий: Водородсодержащий газ – Что такое Водородсодержащий газ?

Влияние состава водородсодержащего газа на выход метанола

Please use this identifier to cite or link to this item: http://earchive.tpu.ru/handle/11683/63312

Title: Влияние состава водородсодержащего газа на выход метанола
Other Titles: Influence of hydrogen-containing gas composition on methanol yield
Authors: Загашвили, Юрий Владимирович
Кузьмин, Алексей Михайлович
Zagashvili, Yuri Vladimirovich
Kuzmin, Alexey Mikhailovich
Keywords: метанолы; синтез-газ; газогенераторы; термодинамика; парциальное окисление; природные газы; составы; водородсодержащие газы; оптимизация; термодинамические расчеты; methanol; synthesis gas; gas generator; thermodynamics; partial oxidation of natural gas
Issue Date: 2020
Publisher: Томский политехнический университет
Citation: Загашвили Ю.
В. Влияние состава водородсодержащего газа на выход метанола / Ю. В. Загашвили, А. М. Кузьмин // Известия Томского политехнического университета [Известия ТПУ]. Инжиниринг георесурсов. — 2020. — Т. 331, № 10. — [С. 187-195].
Abstract: Актуальность исследования обусловлена отсутствием научно-обоснованных данных о выходе метанола из сырья в зависимости от типа используемого окислителя (кислород, обогащенный воздух, воздух) и оптимизации состава и параметров водородсодержащего газа по критериям отношения компонентов синтез-газа Н[2]/СО и модуля (факториала) водородсодержащего газа М для оптимального синтеза метанола. Проблема особенно важна для малотоннажных установок по производству метанола в промысловых условиях, работающих на забалластированном азотом водородсодержащем газе. Цель: оценить влияние оптимизации состава водородсодержащего газа на выход метанола. Объекты: малотоннажные установки по производству метанола из водородсодержащего газа, состоящие из комплекса генерации водородсодержащего газа и комплекса каталитического синтеза метанола.
Комплекс генерации водородсодержащего газа включает трехкомпонентный газогенератор синтез-газа (природный газ – окислитель – химочищенная вода), в котором осуществляется парциальное окисление природного газа, блок теплообменных аппаратов и блок коррекции состава и параметров водородсодержащего газа для обеспечения отношения компонентов Н[2]/СО=2,2-2,8 и модуля М=2,0-2,3. Комплекс каталитического синтеза метанола включает проточный каскад, состоящий из трех последовательно соединенных изотермических реакторов с выводом метанола-сырца после каждого реактора без рециркуляции отходящих и “хвостового” газов. Методы: термодинамические расчеты. Результаты. Подтвержден известный факт повышения удельного выхода метанола в зависимости от концентрации кислорода в окислителе на стадии парциального окисления природного газа; показано, что оптимизация состава водородсодержащего газа, идущего на каталитический синтез метанола, обеспечивает прирост удельного выхода метанола; средний удельный прирост выхода метанола при синтезе на оптимизированном составе при М=2,05 по сравнению с синтезом на неоптимизированном составе газа составляет 8-12 %; прирост удельного выхода метанола сохраняется вне зависимости от принятой в расчетах степени конверсии газа в реакторах каскада комплекса синтеза метанола для всех типов окислителей; выявлена нелинейная зависимость удельного выхода метанола от концентрации кислорода в окислителе, заключающаяся в уменьшении прироста удельного выхода метанола при увеличении концентрации кислорода в окислителе свыше 70 %; выявленная зависимость требует дополнительного изучения и экспериментального подтверждения, она позволяет оптимизировать эксплуатационные затраты на окислитель за счет уменьшения удельных затрат кислорода на выход метанола из сырья.

The research relevance is caused by the lack of scientific evidence about methanol yield from natural gas depending on the type of oxidant (oxygen, enriched air or air) and optimization of structure and parameters of hydrogen-containing gas according to the criteria of the ratio of the components of the synthesis gas H[2]/CO and module (factorial) hydrogen-containing gas M for optimal methanol synthesis. The problem is particularly important for low-tonnage plants producing methanol in field conditions operating on nitrogen-ballasted hydrogencontaining gas. The aim of the research is to evaluate the effect of optimizing the composition of hydrogen-containing gas on the yield of methanol. Objects: low-tonnage plants for production of methanol from hydrogen-containing gas, consisting of a complex for generating hydrogencontaining gas and a complex for the catalytic synthesis of methanol. The complex for generating hydrogen-containing gas includes a three-component synthesis gas generator (natural gas – oxidizer -chemical-treated water), in which the partial oxidation of raw material is carried out, a block of heat exchangers and a block for correcting the composition and parameters of hydrogen-containing gas to ensure the ratio of components H[2]/CO=2,2-2,8 and the module M=2,0-2,3.
The complex of catalytic synthesis of methanol includes a flow cascade consisting of three sequentially connected isothermal reactors with the output of raw methanol after each reactor without recirculating the waste and tail gases. Methods: the thermodynamic calculations. Results. The paper confirms the known fact of increasing the specific yield of methanol depending on the concentration of O[2] in the oxidizing agent under partial oxidation of natural gas. It is shown that optimization of the hydrogen-containing gas which goes through the catalytic methanol synthesis provides an increase in specific yield of methanol. Average specific growth yield of methanol during the synthesis in an optimized composition at M=2,05 compared to non-optimized synthesis gas composition is 8-12 %. The increase in specific yield of methanol is maintained regardless of the adopted in the calculation of gas conversion degree of in the reactors of the cascade complex for the synthesis of methanol for all types of oxidizing agents.
The authors have identified the nonlinear dependence of methanol yield on the concentration of O[2] in the oxidant. It consists of reducing the increase in specific yield of methanol, when the concentration of O[2] in the oxidizer is over 70 %. The revealed dependence requires additional study and experimental confirmation. It allows optimizing the operating costs of the oxidizer by reducing the specific cost of O[2] on methanol yield from the raw material.
URI: http://earchive.tpu.ru/handle/11683/63312
ISSN: 2413-1830
Appears in Collections:Известия ТПУ

Show full item record   Google Scholar

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

ВЛИЯНИЕ СОСТАВА ВОДОРОДСОДЕРЖАЩЕГО ГАЗА НА ВЫХОД МЕТАНОЛА

Том 331 № 10 (2020)
DOI https://doi.
org/10.18799/24131830/2020/10/2871

Актуальность исследования обусловлена отсутствием научно-обоснованных данных о выходе метанола из сырья в зависимости от типа используемого окислителя (кислород, обогащенный воздух, воздух) и оптимизации состава и параметров водородсодержащего газа по критериям отношения компонентов синтез-газа Н2/СО и модуля (факториала) водородсодержащего газа М для оптимального синтеза метанола. Проблема особенно важна для малотоннажных установок по производству метанола в промысловых условиях, работающих на забалластированном азотом водородсодержащем газе. Цель: оценить влияние оптимизации состава водородсодержащего газа на выход метанола. Объекты: малотоннажные установки по производству метанола из водородсодержащего газа, состоящие из комплекса генерации водородсодержащего газа и комплекса каталитического синтеза метанола.

Комплекс генерации водородсодержащего газа включает трехкомпонентный газогенератор синтез-газа (природный газ – окислитель – химочищенная вода), в котором осуществляется парциальное окисление природного газа, блок теплообменных аппаратов и блок коррекции состава и параметров водородсодержащего газа для обеспечения отношения компонентов Н2/СО=2,2÷2,8 и модуля М=2,0÷2,3. Комплекс каталитического синтеза метанола включает проточный каскад, состоящий из трех последовательно соединенных изотермических реакторов с выводом метанола-сырца после каждого реактора без рециркуляции отходящих и «хвостового» газов. Методы: термодинамические расчеты. Результаты. Подтвержден известный факт повышения удельного выхода метанола в зависимости от концентрации кислорода в окислителе на стадии парциального окисления природного газа; показано, что оптимизация состава водородсодержащего газа, идущего на каталитический синтез метанола, обеспечивает прирост удельного выхода метанола; средний удельный прирост выхода метанола при синтезе на оптимизированном составе при М=2,05 по сравнению с синтезом на неоптимизированном составе газа составляет 8–12 %; прирост удельного выхода метанола сохраняется вне зависимости от принятой в расчетах степени конверсии газа в реакторах каскада комплекса синтеза метанола для всех типов окислителей; выявлена нелинейная зависимость удельного выхода метанола от концентрации кислорода в окислителе, заключающаяся в уменьшении прироста удельного выхода метанола при увеличении концентрации кислорода в окислителе свыше 70 %; выявленная зависимость требует дополнительного изучения и экспериментального подтверждения, она позволяет оптимизировать эксплуатационные затраты на окислитель за счет уменьшения удельных затрат кислорода на выход метанола из сырья.

Ключевые слова:

Метанол, синтез-газ, газогенератор, термодинамика, парциальное окисление природного газа

Авторы:

Юрий Владимирович Загашвили

Алексей Михайлович Кузьмин

Скачать PDF

Центр данных по альтернативным видам топлива: основы водорода

Водород (H 2 ) — это альтернативное топливо, которое можно производить из различных внутренних ресурсов. Хотя рынок водорода в качестве транспортного топлива находится в зачаточном состоянии, правительство и промышленность работают над экологически чистым, экономичным и безопасным производством и распространением водорода для широкого использования в электромобилях на топливных элементах (FCEV). Легкие FCEV теперь доступны в ограниченных количествах для потребительского рынка в локализованных регионах внутри страны и по всему миру. Рынок также развивается для автобусов, погрузочно-разгрузочного оборудования (например, вилочных погрузчиков), наземного вспомогательного оборудования, грузовиков средней и большой грузоподъемности, морских судов и стационарных приложений. Дополнительные сведения см. в разделе о свойствах топлива и в Центре ресурсов по анализу водорода.

В окружающей среде много водорода. Он хранится в воде (H 2 O), углеводородах (таких как метан, CH 4 ) и других органических веществах. Одной из проблем использования водорода в качестве топлива является его эффективное извлечение из этих соединений.

В настоящее время паровой риформинг — сочетание высокотемпературного пара с природным газом для извлечения водорода — составляет большую часть водорода, производимого в Соединенных Штатах. Водород также можно получить из воды путем электролиза. Это более энергоемко, но может быть сделано с использованием возобновляемых источников энергии, таких как ветер или солнце, и избегая вредных выбросов, связанных с другими видами производства энергии.

Почти весь водород, ежегодно производимый в Соединенных Штатах, используется для очистки нефти, обработки металлов, производства удобрений и переработки продуктов питания.

Хотя производство водорода может привести к выбросам, влияющим на качество воздуха, в зависимости от источника, FCEV, работающий на водороде, выбрасывает в выхлоп только водяной пар и теплый воздух и считается транспортным средством с нулевым уровнем выбросов. Основные исследования и разработки направлены на то, чтобы сделать эти автомобили и их инфраструктуру практичными для широкого использования. Это привело к выпуску серийных автомобилей малой грузоподъемности для розничных потребителей, а также к первоначальному внедрению автобусов и грузовиков средней и большой грузоподъемности в Калифорнии и доступности автопарка в северо-восточных штатах.

Узнайте больше о водороде и топливных элементах в офисе технологий водорода и топливных элементов.

Водород считается альтернативным топливом в соответствии с Законом об энергетической политике 1992 года. Интерес к водороду как к альтернативному транспортному топливу связан с его способностью питать топливные элементы в автомобилях с нулевым уровнем выбросов, его потенциалом для внутреннего производства и быстрой время наполнения и высокая эффективность. На самом деле топливный элемент в паре с электродвигателем в два-три раза эффективнее двигателя внутреннего сгорания, работающего на бензине. Водород также может служить топливом для двигателей внутреннего сгорания. Однако, в отличие от FCEV, они производят выбросы выхлопных газов и менее эффективны. Узнайте больше о топливных элементах.

Энергия 2,2 фунта (1 кг) газообразного водорода примерно такая же, как энергия 1 галлона (6,2 фунта, 2,8 кг) бензина. Поскольку водород имеет низкую объемную плотность энергии, он хранится на борту транспортного средства в виде сжатого газа, чтобы обеспечить запас хода обычных транспортных средств. В большинстве современных приложений используются резервуары высокого давления, способные хранить водород при давлении 5000 или 10000 фунтов на квадратный дюйм (psi). Например, FCEV, производимые производителями автомобилей и доступные в дилерских центрах, имеют баки на 10 000 фунтов на квадратный дюйм. Розничные заправочные колонки, которые в основном расположены на автозаправочных станциях, могут заполнить эти баки примерно за 5 минут. В электрических автобусах на топливных элементах в настоящее время используются баки на 5000 фунтов на квадратный дюйм, которые заполняются за 10–15 минут. Другие способы хранения водорода находятся в стадии разработки, включая химическое связывание водорода с таким материалом, как гидрид металла или низкотемпературные сорбирующие материалы. Узнайте больше о хранении водорода.

Данные с розничных заправочных станций, собранные и проанализированные Национальной лабораторией возобновляемых источников энергии, показывают, что среднее время, затрачиваемое на заправку FCEV, составляет менее 4 минут.

Калифорния лидирует в стране по строительству водородных заправочных станций для FCEV. По состоянию на середину 2021 года для публики были открыты 47 розничных водородных станций в Калифорнии, а также одна на Гавайях, а еще 55 находились на различных стадиях строительства или планирования в Калифорнии. Эти станции обслуживают более 8000 FCEV. Калифорния продолжает выделять средства на строительство водородной инфраструктуры в рамках своей Программы чистого транспорта. Калифорнийская энергетическая комиссия уполномочена выделять до 20 миллионов долларов в год до 2023 года и инвестирует в первые 100 общественных станций для поддержки и поощрения этих автомобилей с нулевым уровнем выбросов. Кроме того, в северо-восточных штатах запланировано открытие 14 АЗС, причем некоторые из них уже обслуживают клиентов автопарка.

Производители автомобилей предлагают FCEV только тем потребителям, которые живут в регионах, где есть водородные станции. Неторговые станции в Калифорнии и по всей стране также продолжают обслуживать парки FCEV, включая автобусы. Многие распределительные центры используют водород в качестве топлива для погрузочно-разгрузочных машин в своей обычной работе. Кроме того, было сделано несколько объявлений о производстве транспортных средств большой грузоподъемности, таких как магистральные грузовики, для которых потребуются заправочные станции гораздо большей емкости, чем существующие станции малой грузоподъемности. Найдите водородные заправочные станции по всей территории Соединенных Штатов.

Производство водорода: риформинг природного газа

Отдел технологий водорода и топливных элементов

Реформирование природного газа — это передовой и зрелый производственный процесс, основанный на существующей инфраструктуре трубопроводов для доставки природного газа. Сегодня 95% водорода, производимого в США, производится путем риформинга природного газа на крупных центральных заводах. Это важный технологический путь для производства водорода в ближайшей перспективе.

Как это работает?

Природный газ содержит метан (CH 4 ), который можно использовать для производства водорода с помощью термических процессов, таких как конверсия метана с водяным паром и парциальное окисление.

Хотя сегодня большая часть водорода производится из природного газа, Управление технологий водорода и топливных элементов изучает различные способы производства водорода из возобновляемых ресурсов.

Паро-метановый риформинг

Большая часть водорода, производимого в настоящее время в Соединенных Штатах, производится путем конверсии метана с водяным паром, зрелого производственного процесса, в котором высокотемпературный пар (700°C–1000°C) используется для производства водорода из источника метана, такого как натуральный газ. При паровой конверсии метана метан реагирует с паром под давлением 3–25 бар (1 бар = 14,5 фунта на кв. дюйм) в присутствии катализатора с образованием водорода, монооксида углерода и относительно небольшого количества диоксида углерода. Паровой риформинг является эндотермическим, то есть для протекания реакции в процесс необходимо подавать тепло.

Затем, в так называемой «реакции конверсии водяного газа», монооксид углерода и водяной пар реагируют с использованием катализатора с образованием диоксида углерода и большего количества водорода. На заключительном этапе процесса, называемом «адсорбцией при переменном давлении», из газового потока удаляют диоксид углерода и другие примеси, оставляя практически чистый водород. Паровой риформинг также можно использовать для производства водорода из других видов топлива, таких как этанол, пропан или даже бензин.

Реакция паровой конверсии метана
CH 4 + H 2 O ( + Heat) → CO + 3H 2

Реакция сдвига с водным газом
CO + H 2 O → CO 2 + H 2 (+ небольшое количество тепла)

Частичное окисление

При частичном окислении метан и другие углеводороды в природном газе реагируют с ограниченным количеством кислорода (обычно из воздуха), которого недостаточно для полного окисления углеводородов до двуокиси углерода и воды. При доступном количестве кислорода меньше стехиометрического продукты реакции содержат в основном водород и монооксид углерода (и азот, если реакция проводится с воздухом, а не с чистым кислородом), а также относительно небольшое количество диоксида углерода и других соединений. Впоследствии, в реакции конверсии водяного газа, монооксид углерода реагирует с водой с образованием диоксида углерода и большего количества водорода.

Частичное окисление — это экзотермический процесс, при котором выделяется тепло. Процесс, как правило, намного быстрее, чем паровой риформинг, и требует реактора меньшего размера. Как видно на химических реакциях парциального окисления, в этом процессе вначале выделяется меньше водорода на единицу вводимого топлива, чем получается при паровой конверсии того же топлива.

Реакция парциального окисления метана
CH 4 + ½O 2 → CO + 2H 2 (+ тепло)

Реакция конверсии водяного газа
CO + H 2 O → CO 2 + H 2 (+ небольшое количество тепла)

Почему рассматривается этот путь?

Преобразование дешевого природного газа сегодня может обеспечить водород для электромобилей на топливных элементах (FCEV), а также для других целей.