Двигатель с неразделенными камерами сгорания непосредственный впрыск топлива: Как это работает: дизельный двигатель. Часть 1.

Содержание

Как это работает: дизельный двигатель. Часть 1.

    В самом первом выпуске рубрики «Как это работает», мы рассказывали про основные типы двигателей, их историю, обозначили преимущества и недостатки каждого типа, а так же в общем рассмотрели их принцип работы. Теперь самое время углубиться в нюансы работы одного из самых распространенных, но малопонятных – дизельных двигателей.


    Опишем его работу в двух статьях. Итак, в первой части Вы вспомните основы работы дизеля и узнаете про разделенные и неразделенные камеры сгорания (непосредственный впрыск).

 

 

 

    На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте. В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях – непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

 

 

    Рабочий процесс в дизеле происходит следующим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля (в последующем будет рассказано, как эти показатели снизили).

 

 


 

 

 

    Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

 

 

    Особенности:

 

Свечи накаливания в дизельных двигателях

     Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле.
Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.
   

 
    Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

 

 

 

    Типы камер сгорания:

 
    Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.


     Раньше на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

 

 

 

    При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

 

    Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.


    Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.


    Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

 

    Тем не менее, трудности были решены и система непосредственного впрыска открыла “второе дыхание” для дизельных двигателей. Подробности об этом будут в следующей части.

 

Дизельные двигатели авто – устройство и как работают, из чего состоят, типы дизелей

Всё про устройство и принцип работы современного дизельного двигателя автомобиля – какая конструкция и строение, из чего состоит. Подходит для начинающих автолюбителей и чайников.

Конструкция и строение

По конструкции дизельный двигатель не отличается от бензинового – те же цилиндры, поршни, шатуны. Правда, клапанные детали усилены, чтобы воспринимать высокие нагрузки – ведь степень сжатия дизеля намного выше (19-24 единиц против 9-11 у бензинового мотора). Этим объясняется большой вес и габариты дизельного мотора в сравнении с бензиновым. Принципиально отличие в способах формирования смеси топлива и воздуха, её воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает воздух. В конце такта сжатия, когда он нагревается до температуры 700-800
о
С, в камеру сгорания форсунками, под большим давлением впрыскивается солярка и почти мгновенно самовоспламеняется.

Смесеобразование в дизелях протекает за очень короткий промежуток времени. Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы, и каждая частица имела достаточное для полного сгорания количество воздуха. С этой целью топливо в цилиндр впрыскивается форсункой под давлением, в несколько раз превышающим давление воздуха при такте сжатия в камере сгорания.

В дизелях применяют неразделенные камеры сгорания. Они представляют собой единый объем, ограниченный днищем поршня 3 и поверхностями головки и стенок цилиндров. Для лучшего перемешивания топлива с воздухом форму неразделенной камеры сгорания приспосабливают к форме топливных факелов. Углубление 1, выполненное в днище поршня, способствует созданию вихревого движения воздуха.

Мелко распыленное топливо впрыскивается из форсунки 2 через несколько отверстий, направленных в определенные места углубления. Чтобы топливо полностью сгорало и дизель обладал наилучшими мощностями и экономическими показателями, топливо нужно впрыскивать в цилиндр до прихода поршня в ВМТ.

Самовоспламенение сопровождается резким нарастанием давления – отсюда повышенная шумность и жесткость работы. Такая организация рабочего процесса позволяет работать на очень бедных смесях, что определяет высокую экономичность. Экологические характеристики тоже лучше – при работе на бедных смесях выбросы вредных веществ меньше, чем у бензиновых моторов.

К недостаткам относят повышенную шумность и вибрацию, меньшую мощность, трудности холодного пуска, проблемы с зимней соляркой. У современных дизелей эти проблемы не столь очевидны.


Дизельное топливо должно отвечать определенным требованиям. Главные показатели качества топлива – чистота, малая вязкость, низкая температура самовоспламенения, высокое цетановое число (не ниже 40). Чем больше цетановое число, тем меньше период задержки самовоспламенения после момента впрыска его в цилиндр и двигатель работает мягче (без стуков).

Типы дизельных двигателей

Существует несколько типов дизельных моторов. Различие в конструкции камеры сгорания.
В дизелях с неразделенной камерой сгорания
– их называю дизелями с непосредственным впрыском – топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применяется на низкооборотных двигателях большого рабочего объема. Это связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией. Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить экономичность, снизить шум и вибрацию.

Наиболее распространенным является другой тип дизеля – с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Такие двигатели составляют большинство среди устанавливаемых на современные автомобили.

Устройство топливной системы

Важнейшей системой является система топливоподачи. Ее функция – подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.


ТНВД

Предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и действий водителя. По своей сути современный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера.

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п.

На современных авто применяются ТНВД распределительного типа. Насосы этого типа получили широкое распространение. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время они предъявляют высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах малы.

Форсунки

Они вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе. Тип распылителя определяет форму факела топлива, которая важна для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.

Топливный фильтр

Является важнейшим элементом дизельного мотора. Его параметры, такие как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.

Как происходит запуск

Холодный пуск дизеля обеспечивает система предпускового подогрева. В камеры сгорания вставлены электрические нагревательные элементы – свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900оС, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа. Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30оС, разумеется, при условии соответствия сезону масла и дизтоплива.

Турбонаддув и Common-Rail

Эффективным средством повышения мощности является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и в результате увеличивается мощность. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”.

Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, его ресурс существенно меньше ресурса самого двигателя и не превышает 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.


Система Common-Rail. Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива сокращается на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи, и снижается шумность работы мотора.

Дизельные двигатели. Теория | Vincast.ru

Главное достоинство дизельных двигателей – это низкие затраты на топливо, поскольку моторы этого типа имеют малые удельные расходы топлива на основных эксплуатационных режимах, да и само горючее во многих странах заметно дешевле бензина.

К числу недостатков дизеля по сравнению с бензиновыми двигателя ми относятся: сравнительно низкие мощностные показатели, более дорогая в изготовлении и обслуживании топливная аппаратура, худшие пусковые качества, повышенный выброс некоторых токсичных компонентов с отработавшими газами, повышенный уровень шума.

Экономические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от особенностей рабочего процесса и, в частности, от типа камеры сгорания, системы впрыскивания топлива. Камеры сгорания дизельного двигателя делятся на разделенные (вихрекамерные и форкамерные), полуразделенные и неразделенные .

Разделенная вихрекамерная камера сгорания

Разделенная форкамерная камера сгорания

Полуразделенная камера сгорания

Неразделенная камера сгорания

Дизельные двигатели с неразделенной камерой иногда называют двигателям и с непосредственным впрыском.

Дизельные двигатели с разделенной камерой сгорания обычно устанавливаются на грузовики малой грузоподъемности и легковые автомобили. Это определяется необходимостью снижения уровня шума и меньшей жесткостью работы. При подходе поршня к ВМТ воздух из основного объема камеры сгорания вытесняется в дополнительный, создавая в нем интенсивную турбулизацию заряда, что способствует лучшему перемешиванию капель топлива с воздухом. Недостатком дизельных двигателей с разделенной камерой сгорания являются: некоторое увеличение расхода топлива вследствие повышения потерь в охлаждающую среду из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой сгорания имеют низкие расходы топлива и легче запускаются. Недостатком их является повышенная жесткость работы и соответственно – высокий уровень шума.

Для полного сгорания топлива изготовитель выбирает оптимальное соотношение между количеством сопловых отверстий у форсунки и интенсивностью вихревого движения заряда в цилиндре – так, чтобы струи топлива полностью охватили весь воздушный заряд. Чем меньше сопловых отверстий, тем более интенсивным должно быть вращательное движение заряда. У четырехтактных дизельных двигателей вращательное движение воздуха во время хода впуска обеспечивается тангенциальным расположением впускного канала, наличием ширмы у клапана, винтовым (улиткообразным) каналом перед впускным клапаном. В процессе сжатия при подходе поршня к ВМТ воздух перетекает из надпоршневого пространства в камеру сгорания в поршне, увеличивая интенсивность вращательного движения свежего заряда. Поэтому при ремонте дизельных двигателей необходимо следить, чтобы зазор между днищем поршня и головкой цилиндров соответствовал заданной инструкцией величине. При большем зазоре интенсивность турбулизации заряда будет недостаточна, при меньшем на больших нагрузках может появиться стук поршня от его ударов по головке. Во время сборки дизельного двигателя этот зазор проверяется установкой свинцовых пластинок на днище поршня и прокруткой коленчатого вала после затяжки болтов крепления головки.

Способы создания вихревого движения заряда во время впуска:

Тангенциальное расположение канала

Установка на клапане ширмы

Винтовой канал

Пуск дизельного двигателя:

У дизельных двигателей с разделенной камерой сгорания (вихрекамерные или форкамерные) пусковые качества значительно хуже, чем у дизельных двигателей с неразделенной камерой.

Для облегчения пуска дизельные двигатели с разделенной камерой оснащаются электрическими свечами накаливания, устанавливаемыми в форкамеру или вихревую камеру. Реже свечи устанавливаются в дизельных двигателей с непосредственным впрыском.

Свечи бывают открытого и закрытого типа со спиралью накаливания или нагревательным элементом. Они выпускаются теми же фирмами, что и свечи зажигания. Кожух свечи располагается в камере сгорания дизельного двигателя так, чтобы конус распыленного топлива попадал только на его раскаленный наконечник.

В период, когда токсичность отработавших газов оценивалась по выбросу СО и СН (углеводородов), в широкой прессе отмечалось, что дизели имеют из всех ДВС наиболее низкую токсичность. Однако в дальнейшем, когда товарные бензины стали выпускаться без этиловой жидкости, а бензиновые двигатели начали оснащаться трехкомпонентными каталитическими нейтрализатор ами, снижающими содержание СО, СН, NОх на 90-95%, о низкой токсичности дизельных двигателей по сравнению с бензиновыми двигателями стали скромно умалчивать.

Повышенная токсичность дизелей определяется следующими факторами:

Первый из них – низкая эффективность каталитических нейтрализаторов . Это связано с тем, что степень сжатия, а следовательно, и степень расширения дизелей значительно выше, чем у бензиновых двигателей. Поэтому температура отработавших газов недостаточна для эффективной работы нейтрализаторов. В связи с этим не удается добиться снижения выброса оксидов азота, которые в несколько десятков раз более токсичны, чем СО.

Второй фактор – повышенный выброс на некоторых режимах , особенно во время прогрева, продуктов неполного сгорания с характерным неприятным запахом (акролеина, альдегидов и др.), многие из которых являются канцерогенами. Третий – частицы сажи являются носителями канцерогенов. Попадая в дыхательные пути, они вызывают раковые опухоли. Из-за того, что ни в одной из стран до сих пор нет быстродействующих газоанализаторов, нет и возможности нормировать их выброс. Поэтому законодатели используют косвенные показатели – ограничение выброса углеводородов и твердых частиц.

Основные причины повышенной токсичности и повышенного расхода топлива дизельных двигателей следующие:

– низкое качество топлива,

– нарушение работы системы топливоподачи (слишком низкий коэффициент избытка воздуха, неравномерная подача топлива по цилиндрам, смещение фаз впрыска, межцикловая неравномерность подачи топлива),

– повышенный расход масла на угар из-за износа деталей цилиндропоршневой группы,

– в двигателях с турбонаддувом – слишком низкое давление наддува.

Одна из главных характеристик дизельного топлива – это его цетановое число, показывающее способность к самовоспламенению.

Оно определяется на одноцилиндровой установке сравнением со смесью эталонного топлива, подбираемого так, чтобы период задержки воспламенения был таким же, как и у испытуемого горючего. Величина цетанового числа должна быть не менее 45. Она зависит от химического состава топлива и наличия в нем специальных присадок. Увеличение цетанового числа достигается повышением содержания в топливе парафиновых углеводородов. При этом улучшаются пусковые качества, однако при цетановом числе 50…55 ухудшается полнота сгорания.

Источник:

amastercar.ru

Дизельный двигатель CITY SERVICE автосервис в Тольятти автозаводский район. СТО городской Авто Сити Сервис

В последнее десятилетие дизельные технологии развиваются впечатляющими темпами. Модификации легковых авто с дизельными моторами составляют половину новых автомобилей, продаваемых в Европе. Густой черный дым из выхлопной трубы, громкое тарахтение и неприятный запах остались далеко в прошлом. Дизельные моторы сегодня – это не только экономичность, но также высокая мощность и достойные динамические характеристики.

Современный дизель стал тихим и экологически чистым. Как же удалось этому типу ДВС соответствовать постоянно ужесточающимся нормам токсичности и при этом не только не проигрывать в тяговитости и экономичности, но и улучшать эти показатели? Рассмотрим все по порядку…

Принцип работы

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте.

В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля.

Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

Конструкция

Особенности

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода.

Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

Типы камер сгорания

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.

Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.

Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Системы питания

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название – рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима.

Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

Кардинально изменить ситуацию могла только оптимизация процесса горения топливо – воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом.

В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.

В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.

Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок.

Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам.

Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок – высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд».

Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля.

Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Турбодизель

Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.


Особенности работы дизельных двигателей

На первоначальном этапе необходимо разобраться в принципиальных отличиях работы дизельного двигателя от бензинового.

Дизельный двигатель является двигателем внутреннего сгорания с воспламенением от сжатия. Поскольку такие двигатели втягивают воздух, то он сжимается в двигателе до уровня, который существенно выше, чем в двигателях с воспламенением от искры, в которых используется топливовоздушная смесь. Вдобавок ко всему, двигатели с воспламенением от искры очень чувствительны к детонации. С точки зрения коэффициента полезного действия ( КПД ) дизельный двигатель является наиболее эффективным двигателем внутреннего сгорания. Низкооборотные двигатели большего рабочего объема могут иметь КПД в 50% и выше. В результате этого дизельные автомобили имеют низкий расход топлива и низкий уровень вредных выбросов в выхлопных газах, что можно отнести к преимуществу дизельных двигателей по сравнению с бензиновыми. В дизельном двигателе может использоваться четырех- или двухтактный цикл. В автомобильных двигателях практически всегда используется четырехтактный цикл.

При первом такте движения поршня вниз втягивает воздух через открытый впускной клапан. При втором такте, так называемом сжатии, воздух, втянутый в цилиндр, сжимается поршнем, который движется вверх. Степень сжатия составляет от 14:1 до 24:1. При этом процессе воздух разогревается до температуры 8000С. В конце такта сжатия форсунка впрыскивает топливо в нагретый воздух при давлении до 1500 кгс/см2. К началу третьего такта ( рабочего хода ) мелко распыленное топливо самовоспламеняется и на протяжении всего такта сгорает в цилиндре почти полностью. Высвобождаемая при этом энергия давит на поршень. Поршень снова движется вниз, преобразуя химическую энергию в механическую работу. Во время четвертого такта ( выпуска ) отработавшие газы вытесняются движущимся вверх поршнем через открытый выпускной клапан. После этого двигатель снова начинает всасывать воздух для нового рабочего цикла.

В дизельных двигателях используются разделенные и неразделенные камеры сгорания ( соответственно двигатели с предкамерами и непосредственным впрыском). Двигатели с непосредственным впрыском являются более эффективным, более экономичным, чем их аналоги с предкамерами. Исходя из этих соображений двигатели с непосредственным впрыском используются в грузопассажирских и грузовых автомобилях. С другой стороны, из-за более низкого уровня шума двигатели с предкамерами устанавливаются на легковых автомобилях. Вдобавок к этому, двигатель с предкамерой имеет более низкий уровень вредных выбросов выхлопных газах ( НС и NOх ) и более дешев в производстве.

По сравнению с двигателем с воспламенением от электрической искры ( бензиновым двигателем ), оба типа дизельных двигателей являются более экономичными, особенно в диапазоне частичных нагрузок. Дизельные двигатели являются подходящими для использования турбонагнетателей с приводом от выхлопных газов или механического наддува. Использование турбонагнетателя (турбокомпрессора) на дизельных двигателях увеличивает не только отдачу мощности и КПД двигателя, но так же уменьшают содержание вредных примесей в выхлопных газах.

В целом камеры сгорания дизельного двигателя можно разделить на несколько типов:

  • Системы с предкамерой: В системе с предкамерой используемой для легковых автомобилей, топливо впрыскивается в горячую предкамеру (дополнительную камеру ). Здесь начинается дополнительное воспламенение, чтобы достичь образования качественной смеси и уменьшения задержки воспламенения основного процесса сгорания.
  • Система с вихревой предкамерой: В этой системе используемой в дизельных двигателях легковых автомобилей, сгорание также начинается в дополнительной камере. В процессе сгорания используется дополнительная камера сгорания в форме шара или диска ( вихревая камера ) с поверхностью горловины (выреза), расположенной тангенциально в основной камере сгорания.
  • Система с непосредственным впрыском: В системах с непосредственным впрыском, используемых главным образом в грузовых автомобилях и в стационарных дизельных двигателях всех размеров, образование смеси обходится без дополнительной вихревой камеры. Топливо впрыскивается непосредственно в камеру сгорания над поршнем.
  • Система непосредственного смешивания топлива с рапылением по стенкам ( М-система): В этой системе впрыска для стационарных дизельных двигателей теплосодержание ( теплоемкость ) стенок углубления в поршне используется для испарения топлива, и топливавоздушная смесь образуется с помощью управления воздухом для сжатия.

    При сгорании дизельного топлива образуются различные вещества. Их состав зависит от конструкции двигателя, его мощности и нагрузки.

    Полное сгорание топлива приводит к существенному уменьшению концентрации вредных веществ. Полное сгорание обеспечивается точным поддержанием состава топливовоздушной смеси, абсолютной точностью процесса впрыска и оптимальным завихрением топливовоздушной смеси. Главным образом образуется вода ( Н2О ), безвредная двуокись углерода ( СО2 ) и в относительно низкой концентрации следующие соединения: окись углерода ( СО ), несгоревшие углеводороды ( НС или СН ), окислы азота ( NOx ), окись серы ( SO2 ) и серная кислота ( Н2SО4 ), частички сажи. Когда двигатель холодный, то состав выхлопных газов включает в себя не окисленные или окисленные лишь частично углеводороды, которые видны как белый или голубой дым с характерным запахом. На уменьшение расхода топлива и сокращение вредных выбросов влияют следующие параметры:

  • Точная установка момента ( начала ) впрыска
  • Точность при изготовлении форсунок
  • Топливный насос высокого давления ( ТНВД ) с точной дозировкой топлива
  • Модифицированные камеры сгорания
  • Точная геометрия факела распыленного топлива и увеличения давления впрыска

История дизельных двигателей: технологии, покорившие мир

От изобретения дизельного двигателя до современных систем непосредственного впрыска Bosch Common Rail

Для технического прорыва понадобилось всего 13 страниц – на них Рудольф Дизель изобразил и описал двигатель, названный впоследствии его именем. Патент на изобретение под номером 67207 был выдан Имперским патентным ведомством Германии 120 лет назад. Именно тогда, 23 февраля 1893 года, началась история, результатом которой стали миллионы легковых автомобилей, грузовиков и кораблей, работающих на дизельных двигателях сегодня. К сожалению, сам г-н Дизель не дожил до всемирного успеха своего детища: он умер во время морского путешествия 29 сентября 1913 года – ровно сто лет назад.

Секрет успеха его разработки заключался в самовоспламенении топливной смеси – именно это свойство остается ключевым в дизельном двигателе и сегодня. В конструкции Рудольфа Дизеля воздушно-топливная смесь была сжата в соотношении 20:1, что создавало условия для самовоспламенения. В результате эффективность агрегата значительно возросла. Когда Дизель начинал работу над своим двигателем, эффективность бензиновых моделей достигала всего 12%, а газовых – 17%. При этом даже первый прототип изобретателя демонстрировал 25% эффективности.

Дизельные двигатели выходят на рынок: от Mercedes-Benz 260 D до Golf GTD

Уже в 20-х годах прошлого века автомобильные эксперты пророчили дизельному двигателю большое будущее. Однако ждать наступления этого «золотого времени» пришлось не один год. Первый грузовой автомобиль с дизельным двигателем был выпущен в Германии в 1924 году, и только в 1929 году американский производитель двигателей Cummins в качестве эксперимента использовал дизельный двигатель в легковом автомобиле. Первой серийной легковой моделью, работающей на дизеле, стал Mercedes-Benz 260 D, вышедший в 1936 году. Однако понадобилась еще четверть века, чтобы водители перестали воспринимать дизели как медленные, скучные, шумные и грязные моторы.

Впрочем, со временем отношение потребителей изменилось. После Второй мировой войны дизельные авто стали постепенно завоевывать рынок. А появление в 1975 году автомобиля VW Golf Diesel произвело настоящий фурор. Этот компактный хэтчбек стал первой компактной моделью, оснащенной высокооборотным дизельным двигателем. При этом топливные насосы распределительного типа от Bosch обеспечивали автомобилю еще и высокую экономичность. Версия Golf GTD с турбонаддувом и, соответственно, повышенной производительностью, вошла в историю как первый спортивный дизельный легковой автомобиль. На волне такого успеха все ведущие автопроизводители Европы наладили выпуск моделей среднего и гольф-класса, оснащённых дизельными двигателями.

Рубеж в 1000 бар: повышение давления впрыска увеличивает производительность

Завоевав класс компактных автомобилей, дизельная технология продолжила покорение автопрома. Постепенно повышалось давление, а непосредственный впрыск заменил конструкцию с разделёнными камерами сгорания. В 1989 году в автомобиле Audi 100 TDI дебютировал первый аксиально-плунжерный топливный насос высокого давления распределительного типа для непосредственного впрыска дизельного топлива. По новой технологии Bosch топливо под давлением около 1000 бар подавалось непосредственно в цилиндр, что обеспечивало эффективное сгорание. В результате повышалась мощность двигателя, а расход топлива и уровень выбросов снижались. Спустя сто лет после изобретения дизельного двигателя Bosch совершил технический прорыв.

В конце 1990-х годов компания поставляла на рынок несколько разновидностей систем непосредственного впрыска, которые включали в себя радиально-поршневой распределительный насос, технологию с насос-форсунками, систему Common Rail. Уже первые модели были рассчитаны на работу при давлении около 1500 бар, а последующие поколения поддерживали 2000 бар и выше.

Система Common Rail со временем стала доминирующей технологией, что во многом связано с ее тихой и эффективной работой. Особенность системы заключается в том, что топливо подается во все цилиндры при постоянном давлении. Пиковое давление в таких системах ниже, чем при использовании технологии насос-форсунка (где показатели могут достигать значений гораздо более 2000 бар и обеспечивать низкий расход топлива), однако стабильно высокое давление, при котором топливо хранится в общем распределителе, позволяет осуществлять до восьми впрысков за один цикл. Возможность делать предварительные и дополнительные впрыски позволяет двигателю работать тише, а также сокращает уровень выбросов. Таким образом, система Common Rail позволяет снизить вредное воздействие на окружающую среду.

Каждый второй новый автомобиль в Германии – дизельный

Сегодня уже нет сомнения, что дизель предоставляет мощность и динамику, соответствующую или даже превосходящую другие типы двигателей. Благодаря турбокомпрессорам с изменяемой геометрией турбины, которые сейчас являются стандартом, современные дизельные двигатели демонстрируют высокий крутящий момент даже на низких оборотах. Распространенное мнение о том, что дизельные двигатели – это грязь и шум, давно осталось в прошлом. Современные транспортные средства, работающие на дизеле, тихие и экономичные. Системы обработки выхлопных газов, подобные Denoxtronic, дополнительно сокращают выбросы оксидов азота, позволяя соответствовать даже самым строгим стандартам, таким как Euro-6. Дизельный двигатель проделал путь от диковинки и статуса рабочей лошадки до повсеместного использования. Если в 1997 году только 22% автомобилей, проданных в Западной Европе, были дизельными, то сегодня эта цифра составляет около 50%. Даже учитывая активное развитие альтернативных силовых агрегатов, перспективы дизельных двигателей по-прежнему велики. Уже сейчас из Франкфурта в Рим можно доехать на одном баке, а уровень выбросов СО2 составит всего 100 г/км. Кроме того, дизельные двигатели могут быть объединены с электрическими компонентами для создания гибридного привода. Такой подход уже реализован в современных автомобилях Peugeot 3008_Hybrid4 и Volvo V60.

Конечно, Рудольф Дизель даже не мечтал ни о чем подобном, когда впервые собрал свой двигатель в 1897 году. Однако запись в дневнике изобретателя свидетельствует, что он высоко оценивал потенциал своего детища: «После долгих лет напряженных усилий и преодоления невообразимых трудностей, мне наконец-то удалось создать машину, воплощающую мою задумку. Это плавно работающий, очень простой и удобный в эксплуатации механизм, результаты работы которого превосходят все разработки, сделанные ранее»… С мнением Рудольфа Дизеля и сегодня согласны миллионы водителей во всем мире.

Дизельный двигатель – АвтоТема – рубрика На досуге

Принцип работы дизельного двигателя

Головка блока цилиндров с форкамерой. 1 – форсунка, 2 – свеча накаливания, 3 – форкамера

Головка блока цилиндров с вихревой камерой. 1 – форсунка, 2 – свеча накаливания, 3 – вихревая камера

Система непосредственного впрыска Common Rail

Дизельный двигатель, изобретенный в 1892 году Рудольфом Дизелем, в честь которого он и был назван, почти ровесник бензинового мотора. Однако вначале своей карьеры он не был удостоен такого внимания автомобилестроителями, как бензиновый, с которым и вовсе отождествляют эру автомобилей. Тем не менее, последнее время машины укомплектованные дизельными двигателями завоевывают все большую популярность.

С устройством бензинового силового агрегата отечественные автолюбители более-менее знакомы, а вот представление о дизельных моторах чаще всего ограничивается лишь тем, что в бак автомобилей заливается солярка.
Главное принципиальное отличие дизельного двигателя от бензинового заключается в способе подачи топлива. В бензиновом моторе топливовоздушная смесь подается вместе с воздухом, а в дизельном подача топлива и воздуха происходит отдельно. Делается это следующим образом. В цилиндр всасывается воздух, затем он сжимается (степень сжатия дизельных моторов находится в пределах 14-24, что в пару раз выше, чем у бензиновых).

В момент наибольшего сжатия, когда температура воздуха достигает 800–900 градусов, в камеру сгорания под давлением (до 2000 бар), создаваемым топливным насосом высокого давления (ТНВД), впрыскивается топливо, которое вследствие высокой температуры самовоспламеняется. Возгорание сопровождается резким повышением давления и характерным звуком, которое у нас прозвали дизельным тарахтением. У этих двигателей отсутствуют свечи зажигания, но есть свечи накаливания (пусковые свечи, свечи разогрева), которые используются только первые несколько минут работы двигателя.

Их применение обусловлено тем, что в холодное время года, пока мотор не прогреется, температуры сжимаемого воздуха не достаточно, чтобы воспламенить топливо. В остальном эти моторы абсолютно идентичны: та же конструкция, разве что тяжелее за счет более массивных деталей, обусловленных большими нагрузками. Дизельные моторы примерно на треть тяжелее бензиновых аналогичной мощности.

Первые 20–30 лет своего существования дизели использовались в основном в промышленности, на кораблях и военной технике. На тот момент сложные крупногабаритные системы подачи необходимого количества топлива в определенный момент и с заданным давлением не позволяли устанавливать их на небольшие автомобили. Но усовершенствование технологий позволило со временем делать не такие громоздкие механизмы, и в 20-е годы дизельные двигатели сначала появились на грузовой технике и автобусах, а в 1936 году появился первый в мире легковой Mercedes 260 D, употребляющий солярку.

Плюсом дизельных моторов является меньший расход топлива, в сравнении с бензиновыми двигателями (порядка 30% при одной и той же мощности), так как в отличие от бензиновых для изменения работы моторов регулируется подача топлива (на бензиновом моторе регулируется подача воздуха). У дизелей выше и КПД, находящееся в пределах 30–40%, в то время как КПД бензинового мотора равно 20–30 %. За счет более обедненной смеси, мощность дизелей уступает бензиновым моторам того же объема, хотя максимальный крутящий момент достигается при более низких оборотах. Это означает, что у таких моторов более высокие тяговые усилия, а значит, они позволяют “тянуть” массивную и тяжелую технику. Кроме того, высокий крутящий момент на низких оборотах является плюсом для езды на небольших скоростях, например, по бездорожью.

Так же к плюсам дизельных двигателей можно отнести меньший износ цилиндропоршневой группы, так как дизельное топливо, в основе которого лежат предельные углеводороды – парафины, исполняет роль дополнительной смазки, что в свою очередь увеличивает долговечность трущихся поверхностей. Еще одной положительной чертой является отсутствие сложных электрических систем, присутствующих у бензиновых моторов, а топливная аппаратура во время эксплуатации не требует регулировок и настроек. Все делается один раз на заводе. К слову, один из самых главных элементов топливной системы – форсунки, служит порядка 10 лет.

Но там где плюс там и минус. Дизельные моторы, а точнее топливо, которое в них используется, не любит низких температур (густеет), хотя выход из положения найден – зимнее топливо. Как правило, у нас на нем экономят в силу его большей стоимости за счет использования различных присадок, предотвращающих его загустевание. Поэтому этот минус, скорее, носит исключительно национальный характер. И еще один местный недостаток, из-за которого дизельные моторы не столь популярны у нас, – это нестабильное качество солярки плюс наличие серы в нефти, которая экспортируется к нам из соседней России.

И все же, долгое время во всем мире самым главным недостатком дизелей считалось то самое тарахтение и дрожь при работе, отбирающее комфорт. На коммерческой технике с этим мирились, считаясь с плюсами этих моторов, а вот легковые автомобили в виду таких особенностей дизельных моторов успехом не пользовались.

Завоевывать популярность этот двигатель начал после энергетического кризиса 1973 года. С повышением цен на топливо, дизель, употребляющий его в меньшем количестве, да и само топливо дешевле, стал привлекать к себе больше внимания. Однако процент легковых автомобилей, оснащенных такими моторами, все равно был мал.

Долгое время дизельный двигатель тарахтел не меняя принципы работы. Эпоха громких моторов длилась вплоть до 1997 года, пока не изобрели непосредственный впрыск Common Rail.

На сегодня дизельные моторы можно разделить по типам камер сгорания: разделенные и неразделенные. Разделенные камеры сгорания, в свою очередь, делятся на форкамерные и вихрекамерные. Основными задачами таких камер является создание завихрения воздуха, которое способствует лучшему перемешиванию капель топлива с воздухом.

При впрыске топлива через вихревую камеру сгорания улучшается процесс горения, в результате чего он осуществляется более плавно. Моторы с такими камерами в основном устанавливаются на легковые автомобили и малотоннажную технику.

Для получения лучших экологических показателей используют форкамеру. Однако применяется она реже вихревой, в виду
своей сложной конструкции, которая заключается в подборе каналов необходимого сечения, для создания перепада давления и
повышения скорости течения газов.
В двигателях с неразделенной камерой сгорания топливо впрыскивается прямо в цилиндр. Такие моторы обладают меньшим расходом топлива, легче запускаются, но имеют высокий уровень шума.

Появление системы Common Rail (прямой или неразделенный впрыск) позволило формировать не единоразовый впрыск топлива, а проводить его несколькими этапами. Такой метод значительно снизил уровень шумности моторов с неразделенными камерами сгорания, так как удалось продлить процесс горения смеси, и тем самым добиться его плавного протекания. Однако пьезоэлектрические форсунки, применяющиеся в этой системе в виду своей сложности, увеличивают стоимость этих моторов.


Одним из самых важных составляющих топливной системы дизельного двигателя является топливный фильтр. В его задачу входит не только задержка различных механических частиц, находящихся в топливе, но и воды, которая является главным врагом дизельных моторов. Так как жидкость не сжимается, то на моторах с такой степенью сжатия и небольшой по объему камеры сгорания это может грозить гидроударом, кроме того, вода отбирает у двигателя температуру.
На сегодня в Европе автомобили с дизельными двигателями по продажам уже обогнали машины с бензиновыми агрегатами. И кто знает, может быть не за горами признание этого мотора и в нашей стране. Ведь от характерного раздражающего многих шума производителям почти удалось избавиться.

И теперь такие плюсы как экономичность и чистота выбросов (дизели выбрасывают на 25% углекислого газа меньше, чем бензиновые) не заглушаются “тракторным тарахтением”. Однако с вялым темпераментом этих моторов пока что еще конструкторы не справились. Дизельный двигатель менее отзывчив на педаль газа, чем бензиновый. Поэтому в автоспорте эти моторы являются исключением, а не закономерностью.

А это значит, что и в гражданской жизни это спокойствие будет по духу не каждому автолюбителю.

Влияние однократного и раздельного впрыска на характеристики, выбросы и характеристики сгорания двигателя CRDI, работающего на дизельном топливе и биодизельном топливе Honge

В этой статье сообщается об исследовании использования биодизеля в двигателях с непосредственным впрыском Common Rail (CRDI). Эксперименты проводились на двигателе CRDI, работающем на дизельном и биодизельном топливе, чтобы исследовать влияние форсунок с различным количеством отверстий на его работу. Работа CRDI привела к лучшему термическому КПД тормозов (BTE) с использованием инжектора с 7 отверстиями как для топлива, так и для стратегии впрыска.Выбросы HC, CO и дыма были уменьшены, но выбросы NOx были выше для обоих видов топлива. Было замечено, что ID и CD метилового эфира хонге (HOME) были выше, чем у дизельного топлива. Но было обнаружено, что ID был ниже при 100% нагрузке по сравнению с 80% нагрузкой, и, с другой стороны, CD был выше при 100% нагрузке по сравнению с 80% нагрузкой. Кроме того, инжектор с 7 отверстиями привел к более низкому внутреннему диаметру и CD по сравнению с инжектором с 6 отверстиями. Двигатель CRDI с дизельным двигателем и двигателем HOME с форсункой с 7 отверстиями показал снижение внутреннего диаметра на 6–11% и CD на 15–19% по сравнению с режимом CI.PP и пиковая HRR ДОМА также были ниже. Форсунка с 7 отверстиями привела к более высокому PP и HRR для всех видов топлива из-за лучшего смешивания воздуха с топливом. Для биодизельного топлива при IP 900 бар и IT 10 ° до ВМТ с использованием инжектора с 7 отверстиями были приняты дискретные или множественные или разделенные и одноточечные впрыски. Разделенная инъекция HOME, принятая с комбинацией 40-30-30, привела к немного более высокому BTE по сравнению с комбинацией 40-20-40. Однако принятые как одиночный, так и дискретный или множественный впрыск показали улучшенный расход топлива по сравнению с одноточечным впрыском и низкую производительность HOME в обеих версиях по сравнению с дизельным двигателем.Следовательно, характеристики многократного впрыска биодизельного топлива склоняются к характеристикам дизельного топлива. Многоточечные и одноточечные впрыски были приняты для биодизельного топлива при различных давлениях открытия впрыска и фиксированном IT, равном 10 ° BTDC для 80% нагрузки, и было обнаружено, что BTE была немного выше при 900 бар для всех видов топлива. Разделенная инъекция HOME, принятая с комбинацией 40-30-30, привела к немного более высокому BTE по сравнению с комбинацией 40-20-40. Среди всех испытанных давлений нагнетания самый высокий заушный слуховой проход был отмечен при ВГД 900 бар для разделенного впрыска 40-30-30.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй еще раз?

Прямой впрыск топлива – обзор

Прямой впрыск топлива

Другая технология, которая была внедрена относительно недавно в дополнение к VVT и турбонаддуву, – это прямой впрыск топлива в цилиндры бензиновых двигателей.Прямой впрыск топлива в цилиндры использовался с дизельными двигателями и использовался в ряде очень ранних двигателей, работающих на бензине. Однако более поздняя эра двигателей с электронным управлением включала впрыск топлива вне цилиндра во время такта впуска при относительно низком давлении, как объяснено в главе 4. В двигателях с непосредственным впрыском бензина топливо впрыскивается непосредственно в цилиндр и требует относительно высокое давление топлива. Для прямого впрыска топлива (DFI) топливные форсунки установлены в головке блока цилиндров и распыляют бензин в камеру сгорания из топливной рампы.

Двигатель, включающий VVT, турбонаддув и DFI, имеет потенциал для улучшения экономии топлива, выбросов и производительности по сравнению с двигателем сопоставимого размера с фиксированным фазированием клапана, который обычно является безнаддувным и использует многоточечный впрыск топлива во впускной коллектор. Однако, чтобы воспользоваться преимуществами DFI, необходимо работать в нескольких режимах управления.

Одна из стратегий управления DFI настроена на очень низкую требуемую мощность двигателя, включая холостой ход и некоторые условия постоянной нагрузки двигателя при низких и средних скоростях движения автомобиля.Другая стратегия контроля может потребоваться, когда выбросам выхлопных газов требуется стехиометрический воздух / топливо для оптимальной работы каталитического нейтрализатора (см. Главу 4). Тем не менее, другой режим управления используется в условиях работы с полностью или почти полностью открытой дроссельной заслонкой, когда требуемая мощность двигателя равна или близка к максимальной выходной мощности. Эта третья стратегия контроля доступна для относительно коротких интервалов времени (например, подъем по относительно крутому склону), поскольку выбросы выхлопных газов ненадолго превышают установленные стандарты.

Стратегия управления с низким выходом включает относительно высокое содержание воздуха / топлива (например, A / F> 25: 1). Как объяснялось в главе 4, соотношение воздух / топливо, превышающее стехиометрическое, приводит к температурам сгорания, превышающим значения для стехиометрии, и приводит к увеличению выбросов NO x . Хотя эффективность преобразования каталитического нейтрализатора ниже оптимальной для выбросов NO x , для достаточно низкой мощности двигателя все же возможно соблюдение государственных постановлений.

Для этой относительно низкой требуемой стратегии управления мощностью двигателя только воздух нагнетается в двигатель во время такта впуска.Топливо впрыскивается в течение последних нескольких градусов вращения коленчатого вала (около ВМТ) на такте сжатия. Топливно-воздушная смесь для этого режима управления и стратегии неоднородна (как желательно) для обычного многоточечного впрыска топлива во время такта впуска. Когда происходит сгорание, давление в камере сгорания повышается, так что создается крутящий момент / мощность, но на относительно низком уровне. Для каждой конфигурации двигателя уровни мощности, при которых используется более бедная, чем стехиометрическая стратегия управления воздухом / топливом, определяются во время калибровки двигателя.Каждый производитель должен быть в состоянии гарантировать, что выбросы выхлопных газов соответствуют государственным стандартам.

Для любого двигателя DFI существует предел мощности двигателя, для которого можно использовать эту стратегию управления, более бедную, чем стехиометрия. Когда требуемая мощность достигает или превышает этот уровень, стратегия управления возвращается к поддержанию стехиометрии воздуха / топлива. Для стехиометрической стратегии управления топливо впрыскивается непосредственно в цилиндр во время такта впуска. В этом случае топливно-воздушная смесь образуется внутри цилиндра.Конфигурация клапана двигателя такова, что «завихрение» поступающего воздуха смешивается с топливом, образуя по существу гомогенную смесь. Фактически, полученная смесь ближе к однородной однородности, чем при традиционном впрыске топлива во впускной канал. Это условие приводит к сгоранию с выхлопными газами, которые поддерживают концентрацию, близкую к оптимальной для эффективности преобразования каталитического нейтрализатора (см. Главу 4).

Исключением из стратегий управления стехиометрической и бедной смесью является работа двигателя вблизи полностью открытой дроссельной заслонки, как упоминалось выше.За исключением гоночных автомобилей, которые не должны соответствовать нормам выбросов, максимальная выходная мощность для уличных транспортных средств является довольно редким режимом работы. Стратегия управления для этого рабочего режима включает непосредственный впрыск топлива в цилиндр во время такта впуска с воздухом / топливом ниже стехиометрического и, фактически, соответствующей максимальной мощности для данного числа оборотов в минуту. Хотя соотношение воздух / топливо несколько различается в зависимости от модели двигателя, оно находится в общей области воздушной массы-топлива 12: 1.

В целом двигатель DFI, который также включает турбонаддув и VVT, имеет характеристики и выбросы, превосходящие традиционный двигатель без наддува, с фиксированным фазированием клапана и впрыском топлива того же рабочего объема.Тенденция в современных автомобилях – использовать эти технологии.

Что такого хорошего в прямом впрыске? (Азбука автомобильной техники)

Вы, возможно, читали или слышали, как один из ваших любимых редакторов Car Tech говорил о непосредственном впрыске бензина и о том, что это одна из «больших технологий», которая помогает сохранить жизнь почти 200-летнему двигателю внутреннего сгорания в 21 веке.В выпуске Азбуки автомобильной техники на этой неделе я собираюсь объяснить, что такое чертовски прямой впрыск бензина и почему вам должно быть важно, находится он в двигателе вашей следующей машины или нет.

Как работал впрыск топлива перед прямым впрыском?
Современному бензиновому двигателю внутреннего сгорания (ДВС) нужны три вещи, чтобы вращать коленчатый вал: насыщенный кислородом воздух, топливо и искра, чтобы взорвать воздух и топливо. Воздух втягивается через впускное отверстие, где он измеряется датчиком массового расхода воздуха (MAF) автомобиля, а затем проходит во впускной коллектор, где единственный впускной канал делится на четыре-восемь впускных направляющих, каждый из которых ведет к одному из цилиндрических каналов вашего автомобиля. камеры сгорания.Где-то на линии всасываемый заряд смешивается с топливом до того, как свеча зажигания заставляет все это взлететь в камеру сгорания. Я уверен, что для большинства из вас это ICE 101.

Еще в древние времена технологии двигателей карбюраторы и системы одноточечного впрыска топлива производили относительно неточное смешивание воздуха и топлива во впускном коллекторе или даже перед ним, добавляя примерно необходимое количество топлива для всего ряда цилиндров. По большей части каждая камера сгорания имела то, что ей нужно.Однако, в зависимости от конструкции впускного коллектора, это приближение может привести к тому, что в цилиндрах, ближайших к карбюратору или топливной форсунке, будет получено слишком много топлива (работа на богатой смеси), в то время как в самых дальних цилиндрах будет слишком мало топлива (работа на обедненной смеси). Квалифицированный тюнер карбюратора (или компьютер с умным двигателем) мог удержать ситуацию от выхода из-под контроля, но даже лучшая настройка была ограничена конструкцией впускного коллектора.

Эта (не в масштабе) иллюстрация демонстрирует, как одноточечный впрыск может вызвать несоответствие между количеством топлива (зеленого цвета), добавляемого в каждый цилиндр.Антуан Гудвин / CNET

В подавляющем большинстве современных автомобилей используется система многоточечного впрыска топлива (MPFI) (также известная как впрыск через порт). Вот как это работает: вместо того, чтобы использовать один инжектор, который распыляет необходимое количество топлива, каждый из отдельных впускных каналов имеет свой собственный инжектор (или инжекторы), который добавляет брызги аэрозольного топлива во всасываемый воздух из инжектора под давлением. Топливно-воздушная смесь втягивается в открытый канал и в камеру сгорания отступающим поршнем.Затем впускной клапан захлопывается, и в уже закрытом цилиндре происходит взрывное сгорание.

Многоточечный впрыск выравнивает подачу топлива, предоставляя каждому цилиндру собственную форсунку. Антуан Гудвин / CNET

По большей части, MPFI просто прекрасен. Это, безусловно, намного более эффективно, чем более старые карбюраторные системы и системы SPFI, благодаря своей способности регулировать количество топлива, добавляемого во впускное отверстие для каждого отдельного цилиндра, выравнивая ранее бедные и богатые цилиндры на крайних концах коллектора, улучшая выработку энергии. и сокращение потерь топлива.Итак, зачем исправлять то, что фактически не сломано?

Как прямой впрыск повышает производительность?
Вы, возможно, заметили, что во время скачков от карбюратора к SPFI к MPFI точка, в которой топливо добавляется к расходу на впуске, перемещается от перед дроссельной заслонкой к впускному коллектору и далее к отдельным впускным направляющим – все ближе и ближе в камеру сгорания. Прямой впрыск выводит эту эволюцию на новый уровень, помещая инжектор внутри камеры сгорания.При перемещении форсунки в камеру сгорания система прямого впрыска бензина (GDI) получает несколько преимуществ по сравнению с ранее обсужденными системами.

Непосредственный впрыск еще больше улучшается за счет перемещения топливных форсунок в камеру сгорания. Более точное управление означает, что можно добавить еще меньше топлива. Антуан Гудвин / CNET

Поместив форсунку внутрь цилиндра, компьютер двигателя получает еще более точный контроль над количеством топлива во время такта впуска, дополнительно оптимизируя воздушно-топливную смесь для создания чистого горящего взрыва с очень небольшим расходом топлива и увеличенной отдачей мощности.

Система GDI также имеет большую гибкость относительно , когда в цикле сгорания добавляется топлива. Системы MPFI могут добавлять топливо только во время такта впуска поршня, когда впускной клапан открыт. GDI может подливать топливо, когда это необходимо. Например, некоторые двигатели GDI могут регулировать синхронизацию таким образом, чтобы меньшее количество топлива впрыскивалось во время такта сжатия, создавая гораздо меньший управляемый взрыв в цилиндре. В этом так называемом сверхбедном режиме сжигания немного снижается прямая мощность, но значительно сокращается количество топлива, используемого в периоды, когда транспортному средству требуется очень мало рывков (холостой ход, движение накатом, замедление и т. Д.).

Двигатели

GDI также быстрее реагируют на эти изменения времени и количества добавляемого топлива, повышая управляемость. Кроме того, автомобиль может более быстро регулироваться на основе сигналов от датчиков, расположенных ниже по потоку от камеры сгорания, что позволяет контролировать выброс грязных выбросов из выхлопной трубы.

Некоторые автопроизводители даже экспериментировали с использованием GDI для подачи дополнительного потока топлива в цилиндр для создания вторичного взрыва во время цикла сгорания, что потенциально привело к еще большей мощности и эффективности.

Вот забавный факт: технология прямого впрыска не на самом деле так нова, как вы думаете. Эта технология существует с 1920-х годов для бензиновых двигателей и фактически уже используется в большинстве дизельных двигателей.

Есть ли у GDI возможные недостатки?
Вы можете спросить: «Если GDI так хорош, почему его нет в каждой новой машине?»

Частично причина в том, что производство двигателя с прямым впрыском обходится дороже из-за сложности компонентов, а это означает, что автомобиль, который в конечном итоге будет приводить в действие, также будет дороже купить.Например, форсунки двигателя GDI должны быть более прочными, чем форсунки портов, чтобы выдерживать нагрев и давление сотен (или даже тысяч) крошечных взрывов в минуту. Кроме того, поскольку система GDI должна иметь возможность впрыскивать топливо в камеру сгорания под давлением, топливопроводы, по которым подается бензин, должны иметь еще более высокую степень сжатия. Топливные системы GDI могут работать при давлении в несколько тысяч фунтов на квадратный дюйм по сравнению с 40-60 фунтами на квадратный дюйм систем впрыска через порт.

Цена на эти компоненты падает, но в целом и на данный момент портовый впрыск дешевле и «достаточно хорош» для большинства экономичных автомобилей.

Кроме того, некоторые владельцы и специалисты по обслуживанию двигателей GDI (особенно высокопроизводительных моделей с турбонаддувом) сообщают, что в системах с прямым впрыском наблюдается повышенное накопление углерода на задней стороне их впускных клапанов, что со временем приводит к снижению потока воздуха и производительности. Быстрый поиск в Google дает страницу за страницей с анекдотическими сообщениями об этой проблеме. Накопление происходит потому, что в большинстве автомобилей всасываемый воздух, откровенно говоря, довольно грязный – даже с установленными воздушными фильтрами современные системы рециркуляции выхлопных газов и системы вентиляции картера могут добавить немало грязи во всасываемую заправку – и без порта. форсунки, распыляющие бензин (и содержащиеся в нем моющие средства) на клапаны, могут стать довольно грязными на протяжении многих тысяч миль.

Прямой впрыск хорошо сочетается с другими технологиями двигателей.
Автопроизводители находят всевозможные новые способы усовершенствования двигателя внутреннего сгорания с помощью технологии прямого впрыска. Например, некоторые автопроизводители (включая Ford, Audi и BMW) используют GDI в сочетании с турбонаддувом для создания двигателей с малым рабочим объемом, которые обеспечивают небольшой КПД двигателя при большой мощности двигателя.

Система D-4S, используемая в двигателе FR-S / BRZ, сочетает в себе как систему прямого, так и портального впрыска.Антуан Гудвин / CNET

Toyota уже несколько лет предлагает свою систему впрыска топлива D-4S с некоторыми моделями своего 3,5-литрового двигателя V-6. В D-4S используется комбинация прямого впрыска и впрыска через порт, чтобы объединить лучшие черты обеих систем. Как объясняется в этой статье от Wards Auto, система впрыска через порт обрабатывает чистый запуск, прямой впрыск обрабатывает ускорение при полной нагрузке, и две системы работают в тандеме, чтобы сбалансировать все, что между ними.Эта система D4-S также используется в 2,0-литровом оппозитном четырехцилиндровом двигателе, который используется в Scion FR-S и Subaru BRZ.

Разработка технологии управления впрыском топлива в бензиновых двигателях с прямым впрыском

Реферат

Разработаны технологии управления впрыском топлива в бензиновых двигателях с прямым впрыском, направленные на снижение выбросов выхлопных газов (твердых частиц и углеводородов) и подавление детонации.

1) Сокращение выбросов твердых частиц

Предлагается метод оценки твердых частиц (ТЧ) из бензиновых двигателей с прямым впрыском, который используется для вычисления массовой плотности и числовой плотности твердых частиц с использованием массы топлива в богатых смесях, полученных из вычислительная гидродинамика горения (CFD). Выбросы ТЧ от одноцилиндрового бензинового двигателя с прямым впрыском были измерены для определения констант модели, которые требовались в модели оценки.Мы подтвердили, что этот метод может быть применен к различным условиям работы двигателя и схемам распыления топлива. Поскольку для оценки ТЧ с помощью этого метода не требуются расчеты фазы сгорания, это был полезный способ изучения оптимального времени впрыска и / или характеристик распыления за короткие периоды. С помощью этого метода исследовали раздельную закачку для снижения PM. ТЧ было значительно снижено при раздельном впрыске за счет оптимизации времени впрыска.

2) Снижение выбросов углеводородов

Была предложена концепция сжигания для уменьшения общего количества несгоревших углеводородов (THC) во время нагрева катализатора.Замедленное управление зажиганием с разделенным впрыском, время первого впрыска – это более поздний период такта сжатия, а второе – ранний период такта расширения, позволило снизить THC до 33% по сравнению с традиционным методом. Стабильность горения при замедленном воспламенении была значительно улучшена за счет использования несимметричной струи топлива, направляемой под свечу зажигания и ступенчатый поршень. Топливо, впрыскиваемое в момент первого впрыска, направлялось вокруг свечи зажигания, так что стабильная слоистая смесь генерировалась до 30 ° ATDC.

3) Подавление детонации

Влияние горячей системы рециркуляции отработавших газов на явление детонации было количественно исследовано методом CFD, и был предложен метод подавления детонации. Горячие точки из-за остаточного газа (горячий EGR) существуют в камере сгорания после такта сжатия и способствуют возникновению самовоспламенения, которое приводит к детонации. Многократный впрыск топлива, который включает ранний впрыск во время впускного такта, может снизить температуру горячих точек и сделать фазирование сгорания на пределе детонации более продвинутым на 2 °.CA] без увеличения дымовыделения. Охлаждение горячей точки (горячей системы рециркуляции отработавших газов) путем многократного впрыска топлива эффективно для минимизации негативного влияния горячего рециркуляции отработавших газов на детонацию.

Прямой впрыск вызывает больше проблем, чем решает?

В наши дни непосредственный впрыск топлива проникает во все более массовые автомобили, и он может иметь врожденную неисправность, о которой мы должны знать.

Во-первых, что такое прямой впрыск? Прямой впрыск топлива в бензиновых двигателях: топливная форсунка, установленная на головке блока цилиндров, распыляет топливо непосредственно в камеру сгорания.Его предшественник, инжекторный, имел форсунки, установленные во впускном коллекторе, а топливная струя была направлена ​​на заднюю часть впускных клапанов. Почему изменение? Технология прямого впрыска обеспечивает немного большую мощность и лучшую экономию топлива; в зависимости от области применения, как правило, улучшение составляет 10–15%. Но крутящий момент двигателя можно увеличить на 50 процентов.

В чем проблема? На некоторых двигателях задняя часть впускных клапанов и их порты могут покрыться углеродными отложениями.В системах с портовым впрыском более старого типа распыление топлива, направляемое на клапаны, не позволяло этого происходить, поскольку современные виды топлива содержат очистители. Если накапливается достаточно углерода, это может вызвать резкую работу на холостом ходу, спотыкание при ускорении, заглохание, проверку индикаторов двигателя, повышенный расход топлива и общий недостаток мощности. Некоторые водители испытали это на пробеге двигателя менее 50 000 км. Короткие поездки, которые не позволяют двигателю видеть сколько-нибудь значительного времени при полной рабочей температуре, могут усугубить это состояние.

Какое лекарство? Зависит от количества налета и его твердости. В некоторых случаях химическая жидкость, введенная в приемник, например, Sea Foam, может очистить вещи. Это относительно простой процесс, когда вакуумная линия порта используется для всасывания жидкости во впускные отверстия при работающем двигателе. Он действительно создает значительное количество дыма из выхлопных газов, поэтому его следует делать только в хорошо проветриваемых помещениях. В более сложных случаях решением могут быть грецкие орехи.Да, грецкие орехи. Измельченную скорлупу грецкого ореха можно вдувать во впускные отверстия сжатым воздухом и сразу же откачать пылесосом с помощью специального адаптера. Для этого необходимо снять впускной коллектор, и это действительно не работа, сделанная своими руками.

В наихудших сценариях может потребоваться снятие головок цилиндров двигателя для выполнения ручной очистки, что требует затрат, которые вполне соответствуют категории «ой». Многие автопроизводители выпустили новое программное обеспечение для управления двигателем, чтобы помочь решить эту проблему, изменив время открытия впускных клапанов и регулируя угол опережения зажигания.Регулярная замена масла также способствует свободному перемещению механизмов управления клапанами. Если ваш автомобиль пострадал, прекратите использовать топливо с любым количеством этанола.

Что не поможет? Все, что связано с использованием топливных форсунок для очистки беспорядка – это означает добавки к бензину или средства для продувки впрыска топлива. Поскольку форсунки находятся далеко от скопления и не распыляются на клапаны, эти услуги являются пустой тратой времени и денег.

Какие автомобили затронуты? Эти проблемы могут затронуть практически любой автомобиль, оснащенный бензиновым двигателем с прямым впрыском, но некоторые BMW, VW, Audi и Kias, похоже, сталкиваются с этой проблемой чаще, чем другие.Но если вы столкнулись с такой ситуацией, после того, как все почистили, обратитесь к своему авторизованному дилеру, чтобы узнать, доступны ли какие-либо обновления программного обеспечения для вашего двигателя. Некоторые из этих обновлений содержат информацию о том, что они связаны с проблемами углерода.

Оптимизация камеры сгорания дизельных двигателей с прямым впрыском на JSTOR

Abstract

Процедура оптимизации, принятая в настоящем исследовании, основана на генетических алгоритмах (ГА) и позволяет одновременно максимизировать различные функции приспособленности.Оптимизируемые параметры связаны с геометрическими характеристиками камеры сгорания, диапазоны изменения которых очень широки. Для всех исследуемых конфигураций объем чаши и соотношение объема сжатого воздуха к чаше оставались постоянными, так что степень сжатия была одинаковой для всех исследованных камер. Это условие гарантирует, что изменения в выбросах были вызваны только геометрическими вариациями. Угол впрыска распылителя также рассматривался как переменный параметр. Оптимизация проводилась одновременно для разных режимов работы двигателя, т.е.е. нагрузка и скорость, а также соответствующие значения физической подготовки были взвешены в соответствии с их встречаемостью в Европейском тесте по вождению. Фаза оценки генетического алгоритма была выполнена путем моделирования поведения каждой камеры с помощью модифицированной версии кода KIVA3V. Параметры для распылителей и моделей горения были скорректированы в соответствии с экспериментальными данными коммерческой геометрии камеры, взятой в качестве базового случая. Три функции пригодности были определены в соответствии с уровнями выбросов двигателя (сажа, NOx и HC), а функция штрафа использовалась для учета характеристик двигателя.Целью процесса оптимизации был выбор камеры, обеспечивающей наилучший компромисс выбранных фитнес-функций. Кроме того, также были проанализированы камеры, оптимизирующие каждую отдельную фитнес-функцию. В работе также исследовано влияние геометрических характеристик на выбросы.

Информация для издателя

SAE International – это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности.Основные направления деятельности SAE International – обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку “Назад” и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.