Асфальт литой жесткий для покрытий тротуаров тип ii: Всё об асфальтировании / Справочник / Литой асфальт

Содержание

Всё об асфальтировании / Справочник / Литой асфальт

Общие сведения о литом асфальте

Литой асфальт (литая асфальтобетонная смесь) — композиционный дорожно-строительный материал, который представляет собой смесь минеральных материалов (щебня, песка, минерального порошка) и битумного вяжущего (теплоустойчивого битума или полимерно-битумного вяжущего).

Относится к высокоплотным асфальтобетонным смесям и в готовом к укладке виде представляет собой горячую вязко-текучую пластичную массу черного цвета. В отличие от обычных уплотняемых горячих асфальтобетонных смесей, литой асфальт характеризуется избытком битумного вяжущего, что придает ему высокую пластичность.

Литой асфальтобетон — твердое монолитное покрытие устроенное из литой асфальтобетонной смеси.

Литые асфальтобетонные смеси не следует путать с литыми эмульсионно-минеральными смесями (ЛЭМС), которые помимо иного состава имеют также и иное назначение (как правило, используются для тонкослойной поверхностной обработки асфальтированного дорожного покрытия).

Назначение и область применения литых асфальтов

Основным назначением литых асфальтобетонных смесей является устройство верхних слоёв дорожного покрытия. В более редких случаях литой асфальт применяется для устройства нижних слоев покрытия с последующей укладкой поверх них тонкого слоя щебеночно-мастичного асфальта (ЩМА) или литой асфальтобетонной смеси другого типа (такой подход распространен при асфальтировании мостовых сооружений).

Главной сферой применения литого асфальта является мостовое строительство. Данный материал используется для создания верхних защитных слоев покрытия мостовых сооружений, выполняя также функцию гидроизоляции.

Второй по значимости областью применения литых асфальтобетонных смесей является дорожное строительство. Литой асфальт может применяться при асфальтировании автомобильных дорог любых технических категорий во всех дорожно-климатических зонах Украины (от А-1 до А-7), а также при асфальтировании тротуаров, пешеходных и велосипедных дорожек, межрельсового пространства трамвайных путей.

Особую актуальность использование горячих литых асфальтобетонных смесей приобретает при необходимости проведения ямочного ремонта асфальтового покрытия в холодное время года при отрицательных температурах.

Несмотря на то, что главной сферой применения литых асфальтобетонных смесей является мостовое и дорожное строительство, данный материал достаточно часто используется в промышленном и гражданском строительстве в качестве гидроизоляционного материала, материала для устройства твёрдых покрытий на производственных и складских площадках, устройства стяжек и напольных покрытий (с последующей шлифовкой и полировкой такого покрытия до гладкого состояния), создания отмосток.

Типовой состав и технология производства литого асфальта

Литой асфальт отличается от обычных уплотняемых асфальтобетонных смесей более высоким содержанием битумного вяжущего (до 11 %) и минерального порошка (до 25 %).

Минеральная составляющая литой асфальтобетонной смеси включает щебень, песок и минеральный порошок. Щебень применяют из плотных горных пород со следующими характеристиками:

  • Марка по дробимости должна быть не менее 1000
  • Марка по истираемости не менее И1
  • Марка по морозостойкости не ниже F50
  • Содержание зерен лещадной и игловатой формы не более 15 % по массе
  • Содержание пылевидных и глинистых частиц не более 1 % по массе

Песок используют природный, дробленый или из отсевов дробления плотных горных пород. Минеральный порошок применяют активированный и неактивированный из карбонатных горных пород (известняковый или доломитовый).

Таким образом, в части минеральной составляющей (щебень, песок и минеральный порошок) литой асфальт схож с обычной асфальтобетонной смесью, главным же его отличием является вяжущий компонент. При приготовлении литых асфальтобетонных смесей используется теплоустойчивый битум, полимерно-битумное вяжущее или другие битумные вяжущие с улучшенными свойствами (битумно-каучуковое вяжущее, резинобитумное вяжущее и др. ).

Производится литой асфальт на асфальтобетонных заводах в специальных асфальтосмесительных установках по технологии схожей с приготовлением обычных асфальтобетонных смесей. Температура литой смеси при выпуске из смесителя зависит от вида вяжущего и может варьироваться от 190 °С до 240 °С.

Т. к. литая асфальтобетонная смесь отличается высоким содержанием битумного вяжущего и при выпуске имеет высокую температуру (190–240 °С), это приводит к расслаиванию и быстрой потере однородности (проявляется в виде неравномерного оседания минеральных частиц). Для предупреждения процесса расслаивания, сохранения однородности смеси и поддержания высокой рабочей температуры, во время транспортировки литого асфальта к объекту требуется его непрерывное перемешивание с одновременным подогревом. Транспортировка литого асфальта осуществляется специализированными машинами — «кохерами» (другое название — термос-миксер).

Помимо транспортировки, кохер может использоваться в качестве мобильной установки для приготовления литых асфальтобетонных смесей предназначенных для ямочного ремонта дорог. Процесс приготовления такой смеси может осуществляться с использованием новых материалов, а также с добавлением вторичного асфальтобетона (асфальтовой крошки) или из полуфабрикатов. Применение асфальтовой крошки при приготовлении литого асфальта для ямочного ремонта является одним из путей удешевления его высокой стоимости.

Классификация литых асфальтобетонных смесей

По назначению
  • I тип — применяется для устройства верхнего слоя дорожного покрытия на автомагистралях и дорогах I–III категории, проезжей части мостов, эстакад, путепроводов и паркингов. Литая асфальтобетонная смесь I типа производится на специализированной асфальтосмесительной установке, транспортируется к объекту в термосе-миксере, укладывается специальным укладчиком (гусеничным, колёсным или колёсно-рельсовым финишером) или вручную без уплотнения. Наибольший размер зерен каменного наполнителя (щебня) — 15 мм. Содержание зерен крупнее 5 мм — 45–55 % по массе.
  • II тип (вибролитая асфальтобетонная смесь) — предназначена для устройства покрытий автомобильных дорог I–III технических категорий, аэродромов, мостов, эстакад, путепроводов.
    Литая асфальтобетонная смесь II типа производится на обычной асфальтосмесительной установке, транспортируется автосамосвалами с защитным тентом, укладывается обычным асфальтоукладчиком с виброуплотнением (отсюда название «вибролитая»). Наибольший размер зерен щебня — 20 мм. Содержание зерен крупнее 5 мм — 35–50 % по массе.
  • III тип (вибролитая асфальтобетонная смесь) — используется для устройства верхнего слоя основания при строительстве дорог I–III технических категорий, а также аэродромов. Литая асфальтобетонная смесь III типа производится на стандартной асфальтосмесительной установке, к объекту транспортируется в автосамосвалах, укладывается обычным асфальтоукладчиком с виброуплотнением. Наибольший размер зерен щебня — 40 мм. Содержание зерен крупнее 5 мм — 45–65 % по массе.
  • IV тип — применяется для асфальтирования тротуаров, устройства полов внутри помещений, устройства стяжек и гидроизоляции кровли. Наибольший размер зерен щебня — 5 мм.
  • V тип — применяется для ямочного ремонта асфальтобетонных дорожных покрытий, гидроизоляции покрытий и асфальтирования межрельсового пространства в трамвайных путях. Наибольший размер зерен щебня — 20 мм. Содержание зерен крупнее 5 мм — 35–50 % по массе. При выборе материалов для приготовления литых смесей V типа требования к исходным материалам могут быть ниже, так как свойства литого асфальтобетона не должны значительно превышать свойства ремонтируемого асфальтового покрытия. Транспортировка и укладка литого асфальта V типа осуществляется с помощью кохера.

Вибролитая асфальтобетонная смесь — литой асфальт II–III типа. Относительно данных типов литого асфальта в профессиональной и научной среде имеются разногласия, т. к. формально они не могут быть определены как литые, поскольку транспортируются к объекту асфальтирования обычными самосвалами, укладываются стандартными асфальтоукладчиками с виброуплотнением и к тому же требуют уплотнения катками, чего не происходит в случае с литой смесью I, IV и V типа.

По виду вяжущего
  • Литая асфальтобетонная смесь
    — стандартная литая асфальтобетонная смесь приготовленная с применением теплоустойчивого немодифицированного дорожного битума.
  • Литая полимерасфальтобетонная смесь — литая асфальтобетонная смесь в которой в качестве вяжущего компонента используется полимерно-битумное вяжущее (ПБВ).
  • Литая сероасфальтобетонная смесь — литая смесь в которой в качестве вяжущего используется комплексное вяжущее состоящее из битума и модифицированной технической серы. Применение серы позволяет уменьшить расход битума и понизить температуру приготовления литой асфальтобетонной смеси.
  • Литая резиноасфальтобетонная смесь — литая асфальтобетонная смесь в которой в качестве вяжущего используется резинобитумное композиционное вяжущее. Использование в литом асфальтобетоне резиновой крошки способствует повышению долговечности дорожного покрытия, улучшению его фрикционных свойств, а также, в ряде случаев, позволяет снизить расход щебня.

Преимущества и недостатки литого асфальта

Асфальтированные покрытия созданные с применением литых смесей отличаются малой толщиной слоя, высокой плотностью и шероховатостью. Помимо этого, в сравнении с традиционными уплотняемыми асфальтобетонными смесями и щебеночно-мастичным асфальтом, литой асфальт обладает рядом других преимуществ, а именно:

  • Высокая пластичность и подвижность литой смеси.
  • Низкая пористость и водонепроницаемость.
  • Лучшие, в сравнении с обычной асфальтобетонной смесью, гидроизоляционные свойства.
  • Высокая коррозионная стойкость, трещино- и износостойкость.
  • Высокая прочность покрытия, сравнимая с традиционными асфальтобетонами.
  • Высокая эластичность покрытия и способность выдерживать большие деформационные растяжения.
  • Долговечность (устойчивость к старению и накоплению усталостных повреждений).
  • Устойчивость к колееобразованию и высокое сопротивление износу шипованными шинами.
  • Устойчивость к сильным температурным перепадам.
  • Отсутствие необходимости уплотнения уложенной смеси.
  • Возможность проводить ремонтные работы при отрицательных температурах.

К основным недостаткам литых асфальтобетонных смесей и литого асфальтобетона можно отнести:

  • Низкие сцепные показатели асфальтированного покрытия (вследствие большого содержания битумного вяжущего), что приводит к необходимости проведения дополнительных работ связанных с распределением и втапливанием (запрессовкой) черного щебня в уложенный слой литого асфальта.
  • Высокая стоимость смеси связанная с применением дорогостоящих компонентов.
  • Высокая стоимость асфальтирования, связанная с необходимостью проведения подготовительных работ и привлечением специальной техники (кохеры, финишеры, щебнераспределители и др.).

Технология асфальтирования с применением литого асфальта

1. Транспортировка литого асфальта

Транспортировка литой асфальтобетонной смеси к объекту проведения работ осуществляется «кохерами» (специальными машинами, оборудованными системой перемешивания, подогрева и контроля температуры смеси). Необходимость использования кохеров для транспортировки литого асфальта (I, IV и V типа) обусловлена тем, что без принудительного перемешивания и подогревания, смесь начинает расслаиваться и терять пластичность. Литые асфальтобетонные смеси II–III типа устойчивы к расслоению и могут доставляться обычными самосвалами.

2. Подготовительные работы

При устройстве дорожных покрытий из литого асфальтобетона важную роль играет тщательная подготовка нижележащего основания, на которое будет укладываться литая смесь. Если нижележащий слой не является достаточно ровным, его выравнивают путем холодного фрезерования или методом устройства выравнивающего слоя асфальта (при перепаде отметок до 6 см используют мелкозернистую асфальтобетонную смесь, более 6 см — крупнозернистую).

После фрезерования или устройства выравнивающего слоя, нижележащее покрытие обрабатывают битумной эмульсией. Подгрунтовка нижележащего слоя может не выполняться если между устройством нижнего слоя (в том числе выравнивающего) и укладкой литого асфальта прошло не более 10 суток. Подгрунтовка также не требуется в том случае, когда нижний слой устроен из литой асфальтобетонной смеси.

Перед началом укладки литой асфальтобетонной смеси по обеим сторонам асфальтируемой полосы устраивается деревянная или металлическая опалубка с высотой равной толщине укладываемого слоя. Если укладка литого асфальта производится колесно-рельсовым укладчиком, то опалубка не устанавливается, поскольку в этом случае роль опалубки выполняют сами рельсы. Литые асфальтобетонные смеси II–III типа не требуют установки опалубки, т. к. укладываются обычными асфальтоукладчиками методом вибролитья.

3. Укладка литого асфальта

Покрытия из литых асфальтобетонных смесей устраивают в сухую погоду, весной при температуре окружающего воздуха не ниже 5 °С, осенью — не ниже 10 °С. Допускается выполнять асфальтирование и при отрицательной температуре воздуха, но не ниже −10 °С. В этом случае литая асфальтобетонная смесь должна иметь температуру не менее 240 °С и укладка должна производиться в безветренную погоду (или при слабом ветре) на сухую и чистую поверхность. Просушка поверхности может производиться с помощью инфракрасных нагревателей.

В зависимости от типа литой асфальтобетонной смеси укладка может производится колёсными, гусеничными или колесно-рельсовыми финишерами (для литого асфальта I, IV и V типа) или обычными асфальтоукладчиками (для литого асфальта II–III типа). Места не доступные для механической укладки литой смеси асфальтируют вручную.

4. Уплотнение литого асфальта

Литая асфальтобетонная смесь I, IV и V типа не требует уплотнения, т. к. имеет текучую консистенцию и набирает плотность в процессе остывания. Литая асфальтобетонная смесь II–III типа уплотняется вибротрамбующим брусом асфальтоукладчика на этапе укладки и легкими катками на этапе запрессовки черного щебня.

5. Запрессовка (втапливание) черного щебня

Т. к. одним из главных недостатков литого асфальтобетонного покрытия является низкий коэффициент сцепления с шинами транспортным средств, то для повышения его шероховатости выполняется дополнительная процедура распределения и запрессовки щебня, производимая сразу после укладки литого асфальта. К моменту запрессовки черный щебень должен иметь температуру не ниже 100 °С, а поверхность уложенной литой смеси не должна остыть ниже 140–180 °С. Распределение чернощебеночной смеси может производиться вручную или с помощью щебнераспределителя.

Запрессовка черного щебня — технологическая операция по приданию покрытию из литого асфальтобетона I и V типа требуемых фрикционных характеристик путем распределения и втапливания в него горячего черного щебня. В качестве материала для обработки применяют черный щебень фракции 5(3)–10 мм или 10–15 мм.

Черный щебень — искусственный дорожно-строительный материал, получаемый путем смешения гранитного, гравийного или известнякового щебня с вязким или жидким органическими вяжущим (нефтяным дорожным битумом, битумной эмульсией или дегтем).

Краткая историческая справка о литом асфальте

На постсоветском пространстве первые попытки применения литого асфальта относятся к 19 веку. Уже в 1865 году в Санкт-Петербурге литые смеси на основе природного битума были впервые применены при асфальтировании террас Зимнего дворца. Через 5 лет (в 1870 году) с помощью той же литой смеси асфальтировалась улица Малая Садовая и создавалось покрытие на набережной реки Фонтанки. Позднее с применением литых смесей началось асфальтирование дорог в Киеве, Харькове, Одессе, Житомире и других городах Российской империи.

Применение литого асфальта в г. Москва началось в 1874 году, когда рядом с городом Сызрань был построен первый в России завод по производству асфальтовой мастики. Существенно упростился процесс приготовления и укладки литых смесей с того момента как в 1914 году в городе Грозный было запущено производство нефтяного битума. Однако, именно по причине интенсивного развития битумного производства все большее распространение стала получать уплотняемая асфальтобетонная смесь, как более простой и дешевый материал для устройства дорожных покрытий, а интерес к использованию литой смеси начинает падать.

С начала 1970-х годов асфальтирование с применением литого асфальта вновь возвращается в СССР, чему в немалой степени способствовал положительный опыт эксплуатации (способность выдерживать интенсивное грузонапряженное движение, износостойкость и коррозионная стойкость) литых асфальтобетонных покрытий на дорогах Западной и Восточной Германии, Венгрии и Румынии.

К концу 1970-х годов литьевая технология вновь начинает переживать упадок по причине дефицита материалов (теплоустойчивого битума и мелкофракционного щебня), низких темпов строительства, высокой стоимости импортной техники (т. к. собственное оборудование еще не производилось) и других проблем. Эти трудности привели к тому, что в СССР начало развиваться собственное направление литьевой технологии, основанное на использовании метода вибролитья и применении более жестких литых смесей.

В странах Европы литой асфальт широко стал применяться с середины 20 века. В США литой асфальт приготовленный с использованием нефтяных битумов впервые применили в 1876 году. Наиболее широкое распространение литьевая технология получила в Германии, где существует большое количество современных заводов производящих оборудование для приготовления, транспортирования и укладки литых смесей.

Сегодня в мире существует множество организаций деятельность которых связана с разработкой стандартов, технической документации, новых рецептур и составов для литого асфальта, крупнейшими из которых являются:

  • IMAA (International Mastic Asphalt Association) — Международная ассоциация производителей литого асфальта.
  • EMAA (European Mastic Asphalt Association) — Европейская ассоциация производителей литого асфальта.

Литой асфальтобетон

                                     

1. Применение в различных странах.

(Application in various countries)

Прообразом литого асфальтобетона можно считать природный асфальт, который применялся в Вавилоне и Ниневии. этот материал стал использоваться в европейских городах в начале XIX века. был использован для этого гипсового добыча известняка, найденные на полях во Франции, Кассель, Германия, Limmer и Швейцарии, содержит от 5 до 20 % природного битума или тяжелой нефти. для "варки" природного асфальта используются большие металлические горшки, смесь была упакована вручную. В 1829 году в Лионе был впервые литой асфальтобетон, а затем и в крупных столичных городах Лондоне и Париже, началась укладка тротуаров и мостов с асфальтобетонным литой. применения нового покрытия были как положительные, так и отрицательные свойства. горожане-пешеходы были недовольны дымящими производство котлов и липкими в летнюю жару к асфальту подметками. однако, применение литого асфальта существенно уменьшить шум при движении лошади и телеги. В экипажи, стало возможным говорить. на улицах, где они были сложены литой асфальт, движение стало настолько тихим, что внезапное появление экипажа перепуганные горожане, привыкшие к грохоту приближающихся вагонов.

В 1910 - 1950-е годов XX века наибольшее применение литые асфальтобетоны нашли в Германии, где продолжил совершенствование методов установки, подбора составов, расширяющих сферу применения материала. В 1908 году в Берлине и Франкфурте-на-Майне был заложен первый литого асфальтобетона. С конца 1920-х лет в составах расплавленных смесей был применен асфальт озера Тринидад Пич-Лейк. В начале пятидесятых годов он изобретен первый укладчик для литого асфальтобетона осенью. 1954 года в Берлине на улице Siemensstrasse впервые была опробована механизированная укладка литого асфальтобетона. уже в 1960-х лет литой асфальт был уложен бесшовным, ширина до 12 метров, и его применение сместилось в устройства скоростных дорог. в то время самым крупным объектом в устройстве покрытия из литого асфальта был 38-ми километровый участок трассы Нюрнберг - Франкфурт от Tennesee в Шлюссельфельде. используется так называемый "Берлинские рецепты", насыщенные щебнем, обеспечили высокую шероховатость и длинный износостойкость. тут действует соотношение TVbit6 / 60 предусмотрено применение для литого асфальта битума пенетрация от 15 до 65 ед., или смесь из дорожных битумов и натурального асфальта Тринидад. раньше использовали для поверхностной обработки природный песок начал быть заменен на обработанный битумом щебень.

Российская история применения литого асфальта связана, в первую очередь, с открытием и освоением залежей природных битумов доломита в Поволжье, в районе Сызрани. месторождения запасы оцениваются в 22 миллиардов фунтов. В России производство бизнес развивался с 1873, когда Д. И. Воейков вместе с зоологом М. Н. Богданов обнаружен природного битума, пропитанных песчаник в Сызрани уезда. это дало возможность основать производство гудрона и мастики из местных материалов отличного качества. Сызранский асфальт был сильнее, чем западные аналоги и плавится при более высокой температуре. природного асфальта или битуминозных пород перерабатывался в значительном количестве пасты заводы рядом с. работяги и с. Печерского Сызранского уезда, в том числе, для литья гранул, а затем расплавляется в месте установки котла. оба растения в 1889 г. произведено 800 тысяч Т-мастичный асфальтобетон. Симбирск был дешевле за рубежом в начале 20 в. 1 пуд средняя стоимость 35 копеек, но качество считалась лучшей в Европе. В конце 19 в. - начало 20 в. асфальт купил таких городах, как Москва, Киев, Нижний Новгород, Саратов, Астрахань и другие. все перечисленные выше виды литых материалов имели отдаленное сходство с применяемыми в настоящее время составами, однако, практика совершенствования ищите оптимальное соотношение минерального и битума, дополнительного введения песка и щебня, продолжала развиваться.

Современными исследованиями литого асфальтобетона в СССР занимались несколько научно-исследовательских центров. Однако, в отличие от Западной Германии, литой асфальтобетон широко не применяется на территории СССР. Разработка рецептур и технологии применения литого асфальтобетона, исследование напряженно-деформированного состояния многослойной конструкции дорожной одежды мостовых сооружений занимались видные ученые, специалисты - дорожники и мостовики ГУП "НИИМОССТРОЙ", Московский автомобильно-дорожный государственный технический университет МАДИ институт "Гипротрансмост", ФГУП "СоюзДорНИИ", Саратовский государственный технический университет и многие другие.

Асфальт. Что это и зачем нужен

Компания ЗАО "Союз-Лес" асфальтобетонный завод (АБЗ) является одним из крупнейших производителей асфальта (асфальтобетонных смесей) в г. Москва в районе САО.

Производство асфальтобетона является основным видом деятельности нашей компании, поэтому благодаря нашим специалистам и сотрудничеством с МАДИ (Московский автомобильно-дорожный государственный технический университет) достигается максимально возможное качество асфальта в соответствии ГОСТам. А также исходя из данного сотрудничества в области научно-производственой деятельности воплощены нами множество уникальных проектов: улучшение технологий производства афальтобетона за счет достижения модификации битумов; производство новых современных асфалтобетонных смесей таких как сероасфальтобетон, холодный асфальт (битумоминеральная холодная смесь).

Вся продукция выпускаемая на нашем асфальтобетонном заводе сертифицирована на соответствие ГОСТам

Асфальт, виды асфальтобетона. Для чего он нужен?

Асфальт - это твердая, хрупкая или вязкая горная осадочная битумосодержащая порода (битуминозный материал) темно-бурого, почти черного цвета, содержащий тяжелую нефть или природный битум (1-20 %), заполняющая пустоты в породе (известняка, песчаника) или равномерно пропитана (в россыпи - песка).

Асфальтобетон - битумоминеральный материал, полученный в результате уплотнения асфальтобетонной смеси, отвечающий требованиям нормативных документов.

Асфальтобетонная смесь - рационально подобранный материал, состоящий из минеральных компонентов: (щебня или гравия), отсева, песка, минерального порошка с битумом и добавками, взятых в заданных пропорциях и перемешанных в нагретом состоянии в асфальтосмесительной установке. В зависимости от вязкости применяемого битума асфальтобетонные смеси бывают горячие и холодные.

Крупнозернистый асфальтобетон - это горячая асфальтобетонная смесь, состоящая из рационально подобранного состава минеральной части (согласно ГОСТ 9128-97), с содержанием фракционного зернового щебня размером до 40 мм. Особенности структуры крупнозернистого асфальтобетона определяют эффективность применения этого материала как в выравнивающих, так и в нижних слоях дорожного покрытия. Которые наиболее нагружены отражающими нагрузками от колес автомобильного транспорта.

Мелкозернистый асфальтобетон - это горячая асфальтобетонная смесь, состоящая из рационально подобранного состава минеральной части (согласно ГОСТ 9128-97), с содержанием фракционного зернового щебня размером до 20 мм. Особенности структуры мелкозернистого асфальтобетона определяют эффективность применения этого материала как в верхних, наиболее нагруженных и подверженных максимальному износу слоях дорожного покрытия с большой интенсивностью движения, так и в нижних слоях дорожного покрытия.

Песчаный асфальтобетон - это горячая асфальтобетонная смесь, состоящая из рационально подобранного состава минеральной части, с содержанием фракционного зернового отсева дробления щебня (гравия) или песка с размером до 5 мм. Особенности структуры песчаного асфальтобетона определяют эффективность применения этого материала как в верхних, слоях дорожной одежды, так и на пешеходных, тротуарных дорожках.

Щебеночно-мастичный асфальтобетон (ЩМА) - это горячая рационально подобранная асфальтобетонная смесь (согласно ГОСТ 31015-2002), состоящая из жесткого щебеночного каркаса скрепленного матричным асфальтовым вяжущим веществом-мастично подобной массой, в которой весь меж каменный объем заполнен смесью битума с дробленым песком, минеральным порошком и стабилизирующей добавкой. Особенности структуры ЩМА определяют эффективность применения этого материала как в верхних, наиболее нагруженных и подверженных максимальному износу слоях дорожного покрытия с большой интенсивностью движения, так и в нижних слоях дорожного покрытия.

Типы асфальтобетона и некоторые характеристики

Подразделение асфальта в зависимости от наибольшего размера минеральных зерен:

  • крупнозернистые с размером зерен до 40 мм
  • мелкозернистые с размером зерен до 20 мм
  • песчаные с размером зерен до 5 мм

В зависимости от величины остаточной пористости:

  • высокоплотные с остаточной пористостью от 1,0 до 2,5 %
  • плотные с остаточной пористостью от 2,5 до 5,0 %
  • пористые с остаточной пористостью от 5,0 до 10,0 %
  • высокопористые с остаточной пористостью от 10,0 до 18,0 %

В зависимости от содерж ания щебня подразделяются на:

  • «Тип А» - содерж ание щебня 50...60 %
  • «Тип Б» - содерж ание щебня 40...50 %
  • «Тип В» - содерж ание щебня 30...40 %
  • «Тип Г» -без щебня на дробленом песке или смеси природного и дробленого песка при содерж ании последнего не менее 70 %
  • «Тип Д» - без щебня на природном песке или смесях природных песков с отсевами дробления при содерж ании последних менее 70 % по массе

По качеству компонентов подразделяют на марки:

  • высокоплотные - марка 1
  • плотные - Тип А марки 1, 2
  • Типы Б марки 1, 2, 3
  • Типы В марки 1, 3
  • Типы Г марки 1, 2, 3
  • Типы Д марки 2, 3
  • пористые марки 1, 2
  • высокопористые - марки 1, 2

Эксплуатационные характеристики и долговечность дорожных покрытий из асфальтобетона, прежде всего зависят от правильности подбора спецификации и выполнения технологических требований процесса изготовления и укладки смеси

Асфальт чем отличается от асфальтобетона. Что такое асфальтобетон? Его производство и сфера применения


Какой асфальт лучше? Мелкозернистый или крупнозернистый, горячий или холодный?

Изобретение асфальта принесло много позитива автолюбителям. Это и снижение уровня шума на дороге, и уменьшение расхода топлива и атмосферных выбросов. С ростом требований к качеству дорожного покрытия изменяются стандарты качественного покрытия, а в зависимости от добавляемых модификаторов различают типы выпускаемого асфальта.

Асфальт (правильно – асфальтобетон) – устойчивый материал, произведенный из песка, камня (щебня или гравия), связующего битума и минеральных наполнителей в различных пропорциях.

В зависимости от фракции основного заполнителя (щебня, гравия, пека), асфальт подразделяют на крупнозернистый и мелкозернистый. Для крупнозернистого используются щебень с размерами 20 – 40 мм, для мелкозернистого, соответственно, менее 20 мм. Ответить на вопрос, какой из них лучше не возможно из-за различного предназначения этих типов асфальта. Нижние слои дорожного покрытия, призванные быть основанием и выровнять черновое полотно, должны быть жесткими и прочными, поэтому требуют зерен с большой фракцией. А вот верхние слои, отвечающие за форму и гладкость, выполняют из асфальтной смеси с мелкими зернами заполнителя.

В разных климатических зонах асфальтное покрытие дорог должно выдерживать температурные и нагрузочные особенности. Например, не плавиться при высоких температурах, и застывать без потери качества – при низких. В зависимости от температуры, предусмотренной для укладки и застывания, асфальтовые смеси делят на горячие и холодные.

Горячий асфальт производят из щебня (до 95%), песка и гравия, связывая их битумом при температуре 140-1800С. Это наиболее привычная и распространенная технология укладки дорожного покрытия, в которой требуется специальная техника.

Холодный асфальт произведен из щебня с мелкой фракцией (3-8 мм) с использованием жидкого битума и специальных добавок, повышающих эластичность, под температурой в 80-1200С. Добавки повышают эластичность смеси и показатель его сцепки с дорожным полотном.

Горячий и холодный асфальт имеют множество различий, касающихся не только технологии их производства, но и процессов укладки.

  1. Температура укладки. Горячий асфальт не применяют в строительстве дорог, если температура воздуха ниже +50С или выше +250С. При показателях выше этой отметки горячая смесь очень плохо застывает. Для холодного асфальта граничные температуры составляют -300С и +400С. Таким образом, снимаются ограничения на сезонность выполнения ремонтных и строительных работ.
  2. Срок использования готовой смеси холодного асфальта ограничен двумя годами (срок годности). Хранится он может навалом под открытым небом (до 1 года) или в расфасованном виде в мешках по 25-50 кг. Свежеприготовленный горячий асфальт должен быть использован в течение 4-5 часов, а остатки не подлежат хранению и должны быть утилизированы.
  3. Процесс производства холодного асфальта дает минимальный парниковый эффект, в отличие от «соперника».
  4. До места использования горячий асфальт доставляется при температуре не ниже 1300С. Для холодного приемлема окружающая температура.
  5. Для укладки горячего асфальта надолго перекрываются дорожные магистрали. В работах принимают участие самосвалы, катки и виброплиты, а также бригада строителей численностью до 10 человек. Утрамбовать холодный асфальт можно вручную, и это под силу 2-3- рабочим. Останавливать или перенаправлять движение практически не требуется, поскольку после завершения очередного этапа работ, по только что уложенному асфальту могут двигаться автомобили.
  6. В процессе укладки оба вида смеси требуют сухого чернового покрытия (или ямы). Для горячей смеси важно, чтобы края ямы были обработаны битумом, а в холодное время ее нужно дополнительно прогреть.
  7. Стоимость изготовления холодного асфальта в разы выше, чем горячего. Но удобство его хранения и укладки для отдельных регионов нашей страны имеет больше преимуществ.

Также хотелось бы отметить, что холодный асфальтобетон не сможет полностью заменить горячую смесь, ведь его основное предназначение - это ремонт полотна.

Автор: Рыпань Олег, специалист по обустройству дорожного покрытия Компании "ТСГ" www.thetastroy.ru

www.thetastroy.ru

Укладка асфальта. Отличие его от асфальтобетона

Все автодороги обладают особенным покрытием. И носит оно довольно запоминающееся имя — это асфальт, который используется, между прочим, и для иных целей. Асфальт — это такое вяжущее вещество органического происхождения, которое может иметь как искусственную, так и естественную природу. Асфальтовые смеси изготавливаются из материалов, состоящих из минералов (песчаник, известняк) и из битума. Технологическое производство этого вещества возможно только лишь на специальных заводах. Причем от возможностей оборудования производства зависит само качество выпускаемой продукции.

Самый современный асфальт должен соответствовать абсолютно всем нормам и условиям, предъявляющиеся к аналогичным материалам в России. Мастера подмечают, что шит-асфальт более преимуществен в данном отношении. И в правду, он обладает весьма впечатляющими техническими и качественными свойствами. Использовав его для строительства дорог, можно быть уверенным, что данное покрытие будет абсолютно прочным и гладким. Этого можно достичь за счет применения первоклассных компонентов, таких как, песка, качественного асфальта, каменной и бутовой муки. Эти составляющие очень тщательно отбираются по своим гранулометрическим составляющим.

Значительно повысить свойства шит-асфальта способствует применение современнейших технологий производства. Все элементы очень тщательно перемешиваются в специальном миксере при температуре 175 градусов. Это дает возможность асфальту находиться в состоянии расплавленности впредь до его доставки на место самой укладки.

И чем отличаются обыкновенные асфальтовые смеси от асфальтобетона? В асфальтобетоне используют гравий больших фракций либо щебень. Данные составляющие применяются в качестве самой основы покрытий дорог. Помимо крупного гравия и щебня в асфальтобетонных смесях применяют материалы небольших фракций, а также битум, песок и каменную муку.

Также нужно подчеркнуть, что сам асфальтобетон имеет меньшую область использования, чем те же обычные смеси асфальтовые. Так как он обладает наименьшей тягучестью и огромной массой, упругостью, пластичностью и прочее. Это дает возможность применять его для укладки автопокрытий, а также в качестве материала для покрытия полов в промышленных и складских помещениях.

Читайте так же:

www.welcomenn.ru

Всё об асфальтировании / Справочник / Литой асфальт

Общие сведения о литом асфальте

Литой асфальт (литая асфальтобетонная смесь) — композиционный дорожно-строительный материал, который представляет собой смесь минеральных материалов (щебня, песка, минерального порошка) и битумного вяжущего (теплоустойчивого битума или полимерно-битумного вяжущего).

Относится к высокоплотным асфальтобетонным смесям и в готовом к укладке виде представляет собой горячую вязко-текучую пластичную массу черного цвета. В отличие от обычных уплотняемых горячих асфальтобетонных смесей, литой асфальт характеризуется избытком битумного вяжущего, что придает ему высокую пластичность.

Литой асфальтобетон — твердое монолитное покрытие устроенное из литой асфальтобетонной смеси.

Литые асфальтобетонные смеси не следует путать с литыми эмульсионно-минеральными смесями (ЛЭМС), которые помимо иного состава имеют также и иное назначение (как правило, используются для тонкослойной поверхностной обработки асфальтированного дорожного покрытия).

Назначение и область применения литых асфальтов

Основным назначением литых асфальтобетонных смесей является устройство верхних слоёв дорожного покрытия. В более редких случаях литой асфальт применяется для устройства нижних слоев покрытия с последующей укладкой поверх них тонкого слоя щебеночно-мастичного асфальта (ЩМА) или литой асфальтобетонной смеси другого типа (такой подход распространен при асфальтировании мостовых сооружений).

Главной сферой применения литого асфальта является мостовое строительство. Данный материал используется для создания верхних защитных слоев покрытия мостовых сооружений, выполняя также функцию гидроизоляции.

Второй по значимости областью применения литых асфальтобетонных смесей является дорожное строительство. Литой асфальт может применяться при асфальтировании автомобильных дорог любых технических категорий во всех дорожно-климатических зонах Украины (от А-1 до А-7), а также при асфальтировании тротуаров, пешеходных и велосипедных дорожек, межрельсового пространства трамвайных путей.

Особую актуальность использование горячих литых асфальтобетонных смесей приобретает при необходимости проведения ямочного ремонта асфальтового покрытия в холодное время года при отрицательных температурах.

Несмотря на то, что главной сферой применения литых асфальтобетонных смесей является мостовое и дорожное строительство, данный материал достаточно часто используется в промышленном и гражданском строительстве в качестве гидроизоляционного материала, материала для устройства твёрдых покрытий на производственных и складских площадках, устройства стяжек и напольных покрытий (с последующей шлифовкой и полировкой такого покрытия до гладкого состояния), создания отмосток.

Типовой состав и технология производства литого асфальта

Литой асфальт отличается от обычных уплотняемых асфальтобетонных смесей более высоким содержанием битумного вяжущего (до 11 %) и минерального порошка (до 25 %).

Минеральная составляющая литой асфальтобетонной смеси включает щебень, песок и минеральный порошок. Щебень применяют из плотных горных пород со следующими характеристиками:

  • Марка по дробимости должна быть не менее 1000
  • Марка по истираемости не менее И1
  • Марка по морозостойкости не ниже F50
  • Содержание зерен лещадной и игловатой формы не более 15 % по массе
  • Содержание пылевидных и глинистых частиц не более 1 % по массе

Песок используют природный, дробленый или из отсевов дробления плотных горных пород. Минеральный порошок применяют активированный и неактивированный из карбонатных горных пород (известняковый или доломитовый).

Таким образом, в части минеральной составляющей (щебень, песок и минеральный порошок) литой асфальт схож с обычной асфальтобетонной смесью, главным же его отличием является вяжущий компонент. При приготовлении литых асфальтобетонных смесей используется теплоустойчивый битум, полимерно-битумное вяжущее или другие битумные вяжущие с улучшенными свойствами (битумно-каучуковое вяжущее, резинобитумное вяжущее и др.).

Производится литой асфальт на асфальтобетонных заводах в специальных асфальтосмесительных установках по технологии схожей с приготовлением обычных асфальтобетонных смесей. Температура литой смеси при выпуске из смесителя зависит от вида вяжущего и может варьироваться от 190 °С до 240 °С.

Т. к. литая асфальтобетонная смесь отличается высоким содержанием битумного вяжущего и при выпуске имеет высокую температуру (190–240 °С), это приводит к расслаиванию и быстрой потере однородности (проявляется в виде неравномерного оседания минеральных частиц). Для предупреждения процесса расслаивания, сохранения однородности смеси и поддержания высокой рабочей температуры, во время транспортировки литого асфальта к объекту требуется его непрерывное перемешивание с одновременным подогревом. Транспортировка литого асфальта осуществляется специализированными машинами — «кохерами» (другое название — термос-миксер).

Помимо транспортировки, кохер может использоваться в качестве мобильной установки для приготовления литых асфальтобетонных смесей предназначенных для ямочного ремонта дорог. Процесс приготовления такой смеси может осуществляться с использованием новых материалов, а также с добавлением вторичного асфальтобетона (асфальтовой крошки) или из полуфабрикатов. Применение асфальтовой крошки при приготовлении литого асфальта для ямочного ремонта является одним из путей удешевления его высокой стоимости.

Классификация литых асфальтобетонных смесей
По назначению
  • I тип — применяется для устройства верхнего слоя дорожного покрытия на автомагистралях и дорогах I–III категории, проезжей части мостов, эстакад, путепроводов и паркингов. Литая асфальтобетонная смесь I типа производится на специализированной асфальтосмесительной установке, транспортируется к объекту в термосе-миксере, укладывается специальным укладчиком (гусеничным, колёсным или колёсно-рельсовым финишером) или вручную без уплотнения. Наибольший размер зерен каменного наполнителя (щебня) — 15 мм. Содержание зерен крупнее 5 мм — 45–55 % по массе.
  • II тип (вибролитая асфальтобетонная смесь) — предназначена для устройства покрытий автомобильных дорог I–III технических категорий, аэродромов, мостов, эстакад, путепроводов. Литая асфальтобетонная смесь II типа производится на обычной асфальтосмесительной установке, транспортируется автосамосвалами с защитным тентом, укладывается обычным асфальтоукладчиком с виброуплотнением (отсюда название «вибролитая»). Наибольший размер зерен щебня — 20 мм. Содержание зерен крупнее 5 мм — 35–50 % по массе.
  • III тип (вибролитая асфальтобетонная смесь) — используется для устройства верхнего слоя основания при строительстве дорог I–III технических категорий, а также аэродромов. Литая асфальтобетонная смесь III типа производится на стандартной асфальтосмесительной установке, к объекту транспортируется в автосамосвалах, укладывается обычным асфальтоукладчиком с виброуплотнением. Наибольший размер зерен щебня — 40 мм. Содержание зерен крупнее 5 мм — 45–65 % по массе.
  • IV тип — применяется для асфальтирования тротуаров, устройства полов внутри помещений, устройства стяжек и гидроизоляции кровли. Наибольший размер зерен щебня — 5 мм.
  • V тип — применяется для ямочного ремонта асфальтобетонных дорожных покрытий, гидроизоляции покрытий и асфальтирования межрельсового пространства в трамвайных путях. Наибольший размер зерен щебня — 20 мм. Содержание зерен крупнее 5 мм — 35–50 % по массе. При выборе материалов для приготовления литых смесей V типа требования к исходным материалам могут быть ниже, так как свойства литого асфальтобетона не должны значительно превышать свойства ремонтируемого асфальтового покрытия. Транспортировка и укладка литого асфальта V типа осуществляется с помощью кохера.

Вибролитая асфальтобетонная смесь — литой асфальт II–III типа. Относительно данных типов литого асфальта в профессиональной и научной среде имеются разногласия, т. к. формально они не могут быть определены как литые, поскольку транспортируются к объекту асфальтирования обычными самосвалами, укладываются стандартными асфальтоукладчиками с виброуплотнением и к тому же требуют уплотнения катками, чего не происходит в случае с литой смесью I, IV и V типа.

По виду вяжущего
  • Литая асфальтобетонная смесь — стандартная литая асфальтобетонная смесь приготовленная с применением теплоустойчивого немодифицированного дорожного битума.
  • Литая полимерасфальтобетонная смесь — литая асфальтобетонная смесь в которой в качестве вяжущего компонента используется полимерно-битумное вяжущее (ПБВ).
  • Литая сероасфальтобетонная смесь — литая смесь в которой в качестве вяжущего используется комплексное вяжущее состоящее из битума и модифицированной технической серы. Применение серы позволяет уменьшить расход битума и понизить температуру приготовления литой асфальтобетонной смеси.
  • Литая резиноасфальтобетонная смесь — литая асфальтобетонная смесь в которой в качестве вяжущего используется резинобитумное композиционное вяжущее. Использование в литом асфальтобетоне резиновой крошки способствует повышению долговечности дорожного покрытия, улучшению его фрикционных свойств, а также, в ряде случаев, позволяет снизить расход щебня.
Преимущества и недостатки литого асфальта

Асфальтированные покрытия созданные с применением литых смесей отличаются малой толщиной слоя, высокой плотностью и шероховатостью. Помимо этого, в сравнении с традиционными уплотняемыми асфальтобетонными смесями и щебеночно-мастичным асфальтом, литой асфальт обладает рядом других преимуществ, а именно:

  • Высокая пластичность и подвижность литой смеси.
  • Низкая пористость и водонепроницаемость.
  • Лучшие, в сравнении с обычной асфальтобетонной смесью, гидроизоляционные свойства.
  • Высокая коррозионная стойкость, трещино- и износостойкость.
  • Высокая прочность покрытия, сравнимая с традиционными асфальтобетонами.
  • Высокая эластичность покрытия и способность выдерживать большие деформационные растяжения.
  • Долговечность (устойчивость к старению и накоплению усталостных повреждений).
  • Устойчивость к колееобразованию и высокое сопротивление износу шипованными шинами.
  • Устойчивость к сильным температурным перепадам.
  • Отсутствие необходимости уплотнения уложенной смеси.
  • Возможность проводить ремонтные работы при отрицательных температурах.

К основным недостаткам литых асфальтобетонных смесей и литого асфальтобетона можно отнести:

  • Низкие сцепные показатели асфальтированного покрытия (вследствие большого содержания битумного вяжущего), что приводит к необходимости проведения дополнительных работ связанных с распределением и втапливанием (запрессовкой) черного щебня в уложенный слой литого асфальта.
  • Высокая стоимость смеси связанная с применением дорогостоящих компонентов.
  • Высокая стоимость асфальтирования, связанная с необходимостью проведения подготовительных работ и привлечением специальной техники (кохеры, финишеры, щебнераспределители и др.).
Технология асфальтирования с применением литого асфальта
1. Транспортировка литого асфальта

Транспортировка литой асфальтобетонной смеси к объекту проведения работ осуществляется «кохерами» (специальными машинами, оборудованными системой перемешивания, подогрева и контроля температуры смеси). Необходимость использования кохеров для транспортировки литого асфальта (I, IV и V типа) обусловлена тем, что без принудительного перемешивания и подогревания, смесь начинает расслаиваться и терять пластичность. Литые асфальтобетонные смеси II–III типа устойчивы к расслоению и могут доставляться обычными самосвалами.

2. Подготовительные работы

При устройстве дорожных покрытий из литого асфальтобетона важную роль играет тщательная подготовка нижележащего основания, на которое будет укладываться литая смесь. Если нижележащий слой не является достаточно ровным, его выравнивают путем холодного фрезерования или методом устройства выравнивающего слоя асфальта (при перепаде отметок до 6 см используют мелкозернистую асфальтобетонную смесь, более 6 см — крупнозернистую).

После фрезерования или устройства выравнивающего слоя, нижележащее покрытие обрабатывают битумной эмульсией. Подгрунтовка нижележащего слоя может не выполняться если между устройством нижнего слоя (в том числе выравнивающего) и укладкой литого асфальта прошло не более 10 суток. Подгрунтовка также не требуется в том случае, когда нижний слой устроен из литой асфальтобетонной смеси.

Перед началом укладки литой асфальтобетонной смеси по обеим сторонам асфальтируемой полосы устраивается деревянная или металлическая опалубка с высотой равной толщине укладываемого слоя. Если укладка литого асфальта производится колесно-рельсовым укладчиком, то опалубка не устанавливается, поскольку в этом случае роль опалубки выполняют сами рельсы. Литые асфальтобетонные смеси II–III типа не требуют установки опалубки, т. к. укладываются обычными асфальтоукладчиками методом вибролитья.

3. Укладка литого асфальта

Покрытия из литых асфальтобетонных смесей устраивают в сухую погоду, весной при температуре окружающего воздуха не ниже 5 °С, осенью — не ниже 10 °С. Допускается выполнять асфальтирование и при отрицательной температуре воздуха, но не ниже −10 °С. В этом случае литая асфальтобетонная смесь должна иметь температуру не менее 240 °С и укладка должна производиться в безветренную погоду (или при слабом ветре) на сухую и чистую поверхность. Просушка поверхности может производиться с помощью инфракрасных нагревателей.

В зависимости от типа литой асфальтобетонной смеси укладка может производится колёсными, гусеничными или колесно-рельсовыми финишерами (для литого асфальта I, IV и V типа) или обычными асфальтоукладчиками (для литого асфальта II–III типа). Места не доступные для механической укладки литой смеси асфальтируют вручную.

4. Уплотнение литого асфальта

Литая асфальтобетонная смесь I, IV и V типа не требует уплотнения, т. к. имеет текучую консистенцию и набирает плотность в процессе остывания. Литая асфальтобетонная смесь II–III типа уплотняется вибротрамбующим брусом асфальтоукладчика на этапе укладки и легкими катками на этапе запрессовки черного щебня.

5. Запрессовка (втапливание) черного щебня

Т. к. одним из главных недостатков литого асфальтобетонного покрытия является низкий коэффициент сцепления с шинами транспортным средств, то для повышения его шероховатости выполняется дополнительная процедура распределения и запрессовки щебня, производимая сразу после укладки литого асфальта. К моменту запрессовки черный щебень должен иметь температуру не ниже 100 °С, а поверхность уложенной литой смеси не должна остыть ниже 140–180 °С. Распределение чернощебеночной смеси может производиться вручную или с помощью щебнераспределителя.

Запрессовка черного щебня — технологическая операция по приданию покрытию из литого асфальтобетона I и V типа требуемых фрикционных характеристик путем распределения и втапливания в него горячего черного щебня. В качестве материала для обработки применяют черный щебень фракции 5(3)–10 мм или 10–15 мм.

Черный щебень — искусственный дорожно-строительный материал, получаемый путем смешения гранитного, гравийного или известнякового щебня с вязким или жидким органическими вяжущим (нефтяным дорожным битумом, битумной эмульсией или дегтем).

Краткая историческая справка о литом асфальте

На постсоветском пространстве первые попытки применения литого асфальта относятся к 19 веку. Уже в 1865 году в Санкт-Петербурге литые смеси на основе природного битума были впервые применены при асфальтировании террас Зимнего дворца. Через 5 лет (в 1870 году) с помощью той же литой смеси асфальтировалась улица Малая Садовая и создавалось покрытие на набережной реки Фонтанки. Позднее с применением литых смесей началось асфальтирование дорог в Киеве, Харькове, Одессе, Житомире и других городах Российской империи.

Применение литого асфальта в г. Москва началось в 1874 году, когда рядом с городом Сызрань был построен первый в России завод по производству асфальтовой мастики. Существенно упростился процесс приготовления и укладки литых смесей с того момента как в 1914 году в городе Грозный было запущено производство нефтяного битума. Однако, именно по причине интенсивного развития битумного производства все большее распространение стала получать уплотняемая асфальтобетонная смесь, как более простой и дешевый материал для устройства дорожных покрытий, а интерес к использованию литой смеси начинает падать.

С начала 1970-х годов асфальтирование с применением литого асфальта вновь возвращается в СССР, чему в немалой степени способствовал положительный опыт эксплуатации (способность выдерживать интенсивное грузонапряженное движение, износостойкость и коррозионная стойкость) литых асфальтобетонных покрытий на дорогах Западной и Восточной Германии, Венгрии и Румынии.

К концу 1970-х годов литьевая технология вновь начинает переживать упадок по причине дефицита материалов (теплоустойчивого битума и мелкофракционного щебня), низких темпов строительства, высокой стоимости импортной техники (т. к. собственное оборудование еще не производилось) и других проблем. Эти трудности привели к тому, что в СССР начало развиваться собственное направление литьевой технологии, основанное на использовании метода вибролитья и применении более жестких литых смесей.

В странах Европы литой асфальт широко стал применяться с середины 20 века. В США литой асфальт приготовленный с использованием нефтяных битумов впервые применили в 1876 году. Наиболее широкое распространение литьевая технология получила в Германии, где существует большое количество современных заводов производящих оборудование для приготовления, транспортирования и укладки литых смесей.

Сегодня в мире существует множество организаций деятельность которых связана с разработкой стандартов, технической документации, новых рецептур и составов для литого асфальта, крупнейшими из которых являются:

  • IMAA (International Mastic Asphalt Association) — Международная ассоциация производителей литого асфальта.
  • EMAA (European Mastic Asphalt Association) — Европейская ассоциация производителей литого асфальта.

www.unidorstroy.kiev.ua

Что такое асфальтобетон? Его производство и сфера применения

Асфальтобетон — это искусственно созданный материал, который изготавливается путем смешивания определенных минералов и горячего битума. В состав асфальтобетона входят оптимально подобранные составы щебня или гравия мельчайшей фракции и природного, без каких-либо примесей песка, который может быть и дробленным из гранита. Также в смесь может добавляться тонкодисперсный минеральный порошок. Все составляющие асфальтобетона перемешиваются в специальном бункере под определенной температурой.

Производство асфальтобетона

Метод изготовления этого материала может быть исполнен в холодном, теплом и горячем виде. Отличие между ними состоит только в температуре приготовления смеси до состояния однородной массы.

Смешивание асфальтобетонной массы горячим либо теплым способом производится таким образом. В подогретый до определенной температуры битум равномерно добавляются все остальные ингредиенты, предварительно нагретые примерно до такой же температуры, что и вяжущий битум. При холодном смешивании нагревается только один битум, а остальные составные засыпаются холодными.

Асфальтобетон, используемый для покрытия дорог и их ремонта, готовится горячим методом, при этом температура при укладке должна быть в пределах 190 градусов. Чем она выше, тем материал будет пластичнее.

Литой асфальтобетон по своей структуре немного отличается от обычного дорожного бетона количеством минеральных заполнителей. Например, щебень может занимать только половину массы битума либо совсем отсутствовать, но зато много добавляется полимеров. В итоге материал получается довольно тягучим и при укладке его не требуется уплотнять. Такое асфальтирование вы можете заказать на сайте https://asfaltirovanie.ru.

Использование асфальтобетона

Например, литой мелкозернистый асфальтобетон часто используется при устройстве кровельного покрытия на крышах с плоской формой. Также этот материал широко применяется для автодорожного покрытия, вертолетных площадок, в гидротехнических сооружениях, а также при благоустройстве различных территорий.

Кроме всего, литой дорожный асфальтобетон при добавлении в него красящих пигментов может использоваться как декоративный элемент для уличных тротуаров, при устройстве садовых дорожек и аллей.

На дорожном покрытии цветной асфальт используется при разметке разделительных полос, пешеходных переходов и предупреждающих разметок о приближении к зонам, где требуется повышенное внимание водителей.

Декоративный цветной эффект делается путем добавления в смесь цветных минералов, а также вдавливанием или рифлением в уже готовое дорожное покрытие.

kayrosblog.ru

Описание технологии литого асфальта

Литая смесь асфальтобетона представляет собой сложноструктурное композиционное вещество, широко применяемое в строительных целях. Основным отличием литого асфальта от асфальтобетона является процедура его укладки.

Изготовление смеси

В состав литого асфальта входят те же компоненты, что и для асфальтобетона, однако пропорции для замеса разные. Основными составляющими литой смеси являются щебень, песок, минеральный порошок и битум. Однако сами ингредиенты немного отличаются составом. Песок используют природного происхождения или от отсева горных пород, а минеральный порошок - произведённый из высокоактивных карбонатных пород.

Количество битума и порошка значительно выше, чем у асфальтобетона, что делает литой вариант более тягучим и пластичным. Большинство производителей при изготовлении литой смеси применяют асфальтную крошку, что, несомненно, удешевляет процесс создания дорожного покрытия, но негативно сказывается на его свойствах.

Характеристики

Основным преимуществом данного вида покрытия служит полная водонепроницаемость из-за цельной, а не пористой структуры, благодаря чему повышается долговечность и расширяется сфера применения. При соблюдении технологических требований при изготовлении срок службы литого асфальта достигает полувека, что значительно дольше службы асфальтобетона.

Применение таких смесей позволяет сделать дорожное покрытие более гладким и уменьшить толщину, не потеряв при этом уплотняющего свойства. Данный тип асфальтобетона обладает повышенными коррозийными и износостойкими характеристиками, является устойчивым к временным изменениям и усталостным повреждениям, а также способен выдерживать огромные растяжения деформационного характера. Литой асфальт более устойчив к повреждению гусеничной техникой или шипованной резиной, выдерживает резкие перепады температур и длительное термическое воздействие. Для него не требуется применение уплотнительной смеси, а ремонт покрытия можно осуществлять и во время низких температур.

Недостатки

Однако данное покрытие имеет и отрицательные качества, к которым относят высокую стоимость изготовления в связи с применением повышенного количества дорогостоящих составляющих, а также необходимость применять профессиональную технику для укладки и замены асфальта (специализированных термо-миксеров и нагревателей). Кроме того, благодаря высокому содержанию битума страдают вяжущие показатели дорожного покрытия, из-за чего возникает потребность в дополнительных работах по прессовке черного щебня на установленный слой асфальтного покрытия.

Технология литого асфальта

Сама методика не является инновационной. Производство литого асфальта осуществляется на асфальтобетонных заводах в специальных битумомесильных конструкциях, похожих на огромные бетономешалки, по технологии, схожей с изготовлением обычного асфальтобетона. Готовая смесь имеет высокую температуру (от 200 С), которую поддерживают до использования материала по прямому назначению. При транспортировке литого асфальта необходимо постоянно перемешивать смесь и сохранять высокую температуру, для чего были созданы специальные машины – «кохеры», которые являются термо-миксерами.

Применение

Литой асфальтобетон используется для строительства трас и магистралей, дорожно-мостовых покрытий и пешеходных тротуаров. Кроме того, благодаря тягучим свойствам его применяют для гидроизоляции или устилания полов в помещениях. Широкую популярность литой асфальт получил из-за комфортного применения в ремонте дорожных ям в холодную пору года при минусовых температурах. Ведь данное покрытие легко выдерживает до минус 10 градусов и удобно заполняет пространство ямы.

Также применяется литой асфальт и для покрытий тротуаров. Это позволяет сохранять все положительные качества дорожки и придавать ей эстетичную форму и структуру. Сквозь такой тротуар не прорастает трава, не появляются трещины. Данное покрытие способно выдержать как высокую весовую нагрузку, так и перепад температур. Однако применение литой смеси в производстве тротуарной плитки не только сохраняет все полезные свойства асфальта, но и создаёт новые. Такой тротуар обладает повышенной термостойкостью и экологичностью, ведь температура нагрева плитки выше, что не даёт покрытию выделять в окружающую среду канцерогенные вещества.

Литой асфальт легко снимается и демонтируется, а также достаточно просто устанавливается повторно. Это обеспечивает экономию средств на ремонте. Использование качественного литого асфальтобетона для производства тротуарных плиток гарантирует длительный срок годности покрытия, который, в отличие от самого асфальта, может достигать 100 лет. Тротуар из литой смеси является оптимальным вариантом для использования на личных участках, ведь отличается высоким уровнем качества и экологичностью. Литой асфальтобетон благодаря широкому спектру полезных свойств и отсутствию недостатков идеально подходит для производства тротуарного покрытия.

fb.ru

Основные отличия асфальтобетона от асфальта и особенности их укладки

Довольно большое количество дорог имеют особое покрытие, которое обладает очень запоминающимся названием – асфальт, но его применяют не только для дорог. Асфальт, это вяжущее вещество, которое имеет органическое происхождение. Асфальт может быть как натуральным, так и искусственным. Асфальтовые смеси изготовляются из битума, а также минеральных материалов, самими основными есть песчаник или известняк. Качество асфальта напрямую зависит от возможностей оборудования на котором его производят, и изготовление этого вещества возможно только на специализированных для этого заводах.

Современный, качественный асфальт обязательно должен полностью соответствовать всем нормам, и требованием которые в нашей стране предоставляются к материалам подобного рода. Специалисты в данной сфере, отмечают тот факт, что шит-асфальт в этом отношении является наиболее предпочтительным. Ведь он действительно обладает высоким качеством, и техническими характеристиками которые впечатляют. И в случае применения его для строительства дороги, можно быть полностью уверенным в том, что покрытие будет очень прочным и гладким. Этого удается достичь из-за использования компонентов очень высокого качества, а если быть точнее то песка, классного асфальта и каменной (или бутовой) муки. Все составляющие элементы очень тщательно отбираются по гранулометрическому составу.

С целью повышения характеристики шит-асфальта, используют инновационные производственные технологии. Все составляющие тщательно перемешиваются в миксере, при температуре 175 С, и именно это позволяет готовому продукту находится до места его укладки в расплавленном состоянии.

Чем отличается асфальтобетон от самих обычных асфальтовых смесей? Первым отличием есть то, что в данном материале применяют гравий крупных фракций или же щебень. Кроме этого, в асфальтобетонных смесях используют также и материалы мелких фракций, а кроме этого каменную муку, песок и расплавленный асфальт называемый битум.

Также нельзя не отметить, что область, в которой применяется асфальтобетон, меньше той, в которой применяют обычные асфальтовые смеси. С той причины что пластичность, тягучесть, упругость, и прочее меньше чем в обычном асфальте, а еще при этом он обладает большей массой. Но это позволяет использовать его для дорожных покрытий, а также как материал для укладки в складских и промышленных помещениях.

Комментарии к статье Основные отличия асфальтобетона

techliter.ru

Холодный асфальт: отличия от горячего

Дата публикации: 11.12.2017 15:30

Дорожный ремонт с помощью холодного асфальта набирает популярность – поэтому тем, кто занят в этой сфере, нужно иметь представление о свойствах относительно нового материала. Основными различиями между холодным и традиционным горячим асфальтом являются:

  1. Температура. Холодный асфальт получил свое название за то, что его можно укладывать сразу после распаковки, без нагревания. Температура воздуха при этом также может быть существенно ниже, чем у традиционного горячего асфальта. Холодный асфальт можно класть даже при минусовой температуре (до минус 5 градусов), а для горячего самая низкая допустимая температура воздуха – те же пять градусов, но выше нуля.
  2. Состав. Главное расхождение в составах смесей состоит в том, что для приготовления холодного асфальта используют жидкий, а не вязкий битум. Соответственно, покрытие становится прочным, когда из жидкого битума испаряются углеводородные соединения. Этот процесс происходит гораздо быстрее, чем затвердение горячего асфальта, поэтому смесь на основе жидкого битума удобно применять для оперативного ремонта.
  3. Способ изготовления. Как уже отмечалось, холодный асфальт не требует обязательного нагревания, что еще более сокращает время на ремонт с помощью этой смеси. При этом горячий асфальт нужно использовать максимум в течение 2-3 часов после изготовления, а холодный, при надлежащих условиях хранения, не теряет своих свойств неделями, а то и месяцами.

Значат ли все эти преимущества, что холодный асфальт вскоре вытеснит горячий из дорожного строительства. Нет, не значит. При всем удобстве применения холодная асфальтобетонная смесь является гораздо менее прочной, чем горячая. Такой материал полезен при срочном ремонте, когда нужно оперативно заделать яму, а вот в качестве постоянного покрытия традиционной горячей асфальтовой смеси пока нет равных. Холодный асфальт теоретически допустимо применять для обеспечения покрытия на дорогах низких категорий – однако на практике и в таких ситуациях обычно используются горячие смеси.

Итак, где же используется холодный асфальт?

Как правило, холодная асфальтобетонная смесь применяется при ямочном ремонте. При этом площадь ямы обычно не превышает 1 квадратного метра, а площадь общего участка работ – 5 квадратных метров. Такой материал идеально использовать в аварийном ремонте – когда нужно срочно ликвидировать небольшую яму, чтобы она не разрослась и не затруднила движение на данном участке. Своевременный ямочный ремонт позволит не прерывать дорожное движение и тем самым не создавать неудобств автомобилям – ведь холодный асфальт не нуждается во времени на застывание, трафик можно возобновлять сразу же после ремонта.

Изобретение холодного асфальта стало настоящим спасением для сотрудников дорожных служб в осенне-зимний период. Ремонт дороги при низких температурах, а также при дожде и снегопаде невозможен, если применять традиционную горячую асфальтовую смесь. Ее использование также затрудняется ранней весной, когда велики контрасты между дневной и ночной температурой, когда снег может таять и снова замерзать по несколько раз в день. Ремонт с помощью холодных смесей позволяет не обращать внимания на эти неудобства.

Ремонтировать дороги зимой можно также с применением горячего литого асфальта: этот материал надежнее и прочнее холодной смеси. Однако он гораздо дороже стоит, причем выпускается в недостаточном количестве: предприятия по производству литого асфальта не могут обеспечить им всех желающих. Поэтому холодный асфальт остаётся лучшим вариантом для ремонта дорог III–V категории. Из-за недостаточной прочности этот материал не рекомендуется использовать при ямочном ремонте дорог I–II категории: в таких случаях делают выбор в пользу литого асфальта.

makrodor.by

Типы дорожного покрытия - Интерактивное покрытие

В принципе, все типы дорожного покрытия с твердым покрытием можно разделить на две группы: гибкие и жесткие. Гибкие покрытия - это покрытия, покрытые битумными (или асфальтовыми) материалами. Они могут быть либо в форме обработки поверхности дорожного покрытия (например, битумной обработки поверхности (BST), обычно применяемой на дорогах с меньшей интенсивностью движения), либо в виде поверхностных полос HMA (обычно используемых на дорогах с большим объемом, таких как сеть автомагистралей между штатами). Эти типы покрытий называются «гибкими», поскольку вся конструкция покрытия «изгибается» или «прогибается» из-за транспортных нагрузок.Гибкая конструкция дорожного покрытия обычно состоит из нескольких слоев материалов, которые могут выдерживать это «изгибание». С другой стороны, жесткие покрытия состоят из поверхностного слоя PCC. Такие покрытия существенно «жестче», чем гибкие покрытия из-за высокого модуля упругости материала PCC. Кроме того, эти покрытия могут иметь армирующую сталь, которая обычно используется для уменьшения или устранения стыков.

Каждый из этих типов покрытия распределяет нагрузку по грунтовому полотну по-разному.Жесткое покрытие из-за высокого модуля упругости (жесткости) PCC имеет тенденцию распределять нагрузку по относительно широкой площади земляного полотна (см. Рисунок 1). Бетонная плита сама по себе обеспечивает большую часть структурной способности жесткого покрытия. Гибкое покрытие использует более гибкий слой покрытия и распределяет нагрузки на меньшую площадь. Он основан на комбинации слоев для передачи нагрузки на земляное полотно.

Рис. 1. Распределение нагрузки на жесткое и гибкое покрытие В целом может возникнуть некоторая путаница относительно того, почему используется одно покрытие, а не другое.В основном, государственные дорожные агентства обычно выбирают тип дорожного покрытия либо по политике, либо по экономике, либо по обоим направлениям. Гибкие тротуары обычно требуют определенного обслуживания или ремонта каждые 10-15 лет. С другой стороны, жесткие покрытия могут служить от 20 до 40 лет при минимальном обслуживании или ремонте или вообще без него. Таким образом, неудивительно, что жесткие покрытия часто используются в городских районах с интенсивным движением транспорта. Но, естественно, есть компромиссы. Например, когда гибкое покрытие требует капитального ремонта, варианты, как правило, дешевле и быстрее в исполнении, чем жесткие покрытия.

В этом разделе рассматриваются гибкие и жесткие покрытия, а также основные характеристики и типы каждого из них.

Строительство асфальтового покрытия | Институт асфальта

Хотя есть бесконечное количество вопросов, которые можно задать, мы составили список тех вопросов, которые были адресованы нам больше всего.

Эти часто задаваемые вопросы сгруппированы по предметным областям, перечисленным в раскрывающемся списке ниже.

Мы постарались, чтобы вопросы и ответы были краткими.Там, где это возможно, дается ссылка на дополнительную информацию для тех, кто ищет более подробную информацию по данной теме.

Для получения дополнительной информации см. Документы по техническому обслуживанию и ремонту, другие области проектирования, журнал Asphalt и веб-сайты APA, интернет-магазин Asphalt Institute и страницу со ссылками для получения другой информации, относящейся к этой тематической области.

Мы также рекомендуем вам посещать наши курсы Асфальтовой Академии на объектах по всей стране, чтобы получить профессиональные инструкции по асфальтовым темам.

Грунтовка

Что такое грунтовка?

Нанесение низковязкого асфальта на гранулированную основу при подготовке к укладке асфальтового покрытия.

Для чего нужен грунтовочный слой?

  • Для покрытия и приклеивания рыхлых частиц материала к поверхности основы.
  • Для упрочнения или повышения жесткости базовой поверхности для создания рабочей площадки для строительной техники.
  • Для заполнения капиллярных пустот в поверхности основного слоя, чтобы предотвратить миграцию влаги.
  • Для обеспечения сцепления между основным слоем и последующим слоем.

Какие асфальтовые материалы следует использовать для грунтовок?

Чтобы грунтовка была эффективной, она должна проникать в основной слой. Обычно хорошо подойдет легкая фракция средней твердости, такая как MC-30. Однако во многих областях качество воздуха вызывает озабоченность, и EPA ограничило или исключило использование сокращений. В таких местах необходимо использование эмульгированного асфальта.Есть несколько способов выполнить грунтовку при использовании эмульсии:
  • Большинство производителей эмульсий выпускают патентованные продукты, одна из которых представляет собой эмульсию, специально разработанную для использования в грунтовочных покрытиях.
  • Если гранулированный основной материал имеет несколько пористую градацию, на нанесение грунтовочного слоя часто можно повлиять, нанеся медленно схватывающуюся эмульсию (SS-1, SS-1 h, CSS-1, CSS-1 h), разбавленную 5. части воды на 1 часть эмульсии. Путем нанесения нескольких (4 или 5) легких аппликаций (0,10 галлона / си) можно получить водонепроницаемую поверхность на основном слое.
  • Добавьте эмульсию в воду для уплотнения, укладывая последние 2–3 дюйма основного слоя. Используйте разбавление и норму внесения, которые обеспечат от 0,1 до 0,3 галлона на квадратный ярд (разведение 3: 1; 4 внесения; расход 0,15 галлона / си).
  • Завершите укладку основного материала курса, затем сделайте рыхление примерно на 3/4 дюйма. Нанесите около 0,20 галлона / си 2 прямой эмульсии (неразбавленной) и смешайте ее со скарифицированным материалом. Затем ретранслируйте смешанный материал и уплотните.

Требуется ли грунтовка?

Одно время считалось, что грунтовка является важным элементом хорошей конструкции дорожного покрытия. Однако в последние годы некоторые инженеры отказались от использования грунтовки, особенно когда слой (слои) асфальта (поверхность и / или основание) имеет толщину 4 дюйма или более. Во многих случаях грунтовочные покрытия не использовались, даже если толщина поверхности составляла всего 2 дюйма. За последние 20 лет небольшое количество повреждений дорожного покрытия, если они вообще были, можно объяснить отсутствием грунтовочного покрытия.

Лаки

Зачем нужна закрепка?

Для обеспечения сцепления между последующими слоями дорожного покрытия.

Какой материал следует использовать для закрепления?

Медленно схватывающаяся эмульсия, SS-1, CSS-1, SS-I h или CSS-1 h, хорошо работает при разбавлении водой в соотношении 50/50.

Какую норму применения следует использовать?

Вы хотите добиться очень равномерного нанесения от 0,03 до 0,05 галлона / год остаточного асфальта на приклеиваемый слой (так сказать, покраска).Медленно схватывающиеся эмульсии обычно имеют остаточное содержание асфальта около 2/3. Следовательно, расход разбавленного материала от 0,10 до 0,15 галлонов в год даст вам 0,03-0,05 галлонов в год.
  • Предостережение № 1 : После нанесения связующего слоя необходимо дать эмульсии время для разрушения (превращения ее из коричневой в черную) перед нанесением на нее горячей смеси. Время, необходимое для этого, будет зависеть от погоды. В хорошую погоду это займет всего несколько минут.В непогоду это может занять несколько минут.
  • Осторожно № 2 : Никогда не наносите эмульсионный клейкий слой на холодное покрытие (ниже точки замерзания). Эмульсия разрушится, но вода и эмульгаторы замерзнут и останутся в слое, на которое нанесено липкое покрытие.

Если одно из этих предупреждений нарушено, велика вероятность того, что верхний слой не будет сцепляться с нижним слоем, и возникнет плоскость скольжения.

Когда необходимо связующее покрытие?

Практически всегда! В редких случаях, когда строится тротуар, который не используется путешествующими людьми, и каждый последующий подъемник устанавливается в быстрой смене, липкое покрытие может не понадобиться.Однако хороший дешевый страховой полис - всегда использовать липкие покрытия.

Асфальтобетонные смеси

Существуют ли какие-либо практические правила для асфальтового покрытия контейнерного терминала относительно максимальной нагрузки, не вызывающей повреждений?

Никакое эмпирическое правило не дает ответа на ваш вопрос, но следует рассмотреть два вопроса:
  1. Соответствует ли конструкция дорожного покрытия (земляное полотно, основание, основание и все слои асфальта) нагрузкам? Вам необходимо приобрести нашу инструкцию MS-23, Расчет толщины асфальта для тяжелых колесных нагрузок .
  2. Является ли поверхность горячего асфальта достаточно жесткой, чтобы противостоять деформации (борозды или вмятины)? Это зависит от многих факторов, таких как жесткость исходной смеси, возраст смеси (становится жестче со временем), температура смеси во время загрузки, сама загрузка, продолжительность приложенной нагрузки и т. Д. Хотя обычно это не проблема, когда бывает, что ее обычно можно решить, поместив несколько стальных (или других твердых материалов) пластин ниже точечной нагрузки, чтобы распределить нагрузку по более широкой области.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо. Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Для достижения достаточного уплотнения необходимы надлежащие методы прокатки и соответствующее оборудование.Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату. Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в стык достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с малыми пустотами и проницаемостью.

Есть ли проблема с измельчением и переработкой асфальтобетонных смесей, в которых использовались модифицированные полимером связующие?

Вообще говоря, нет особых проблем с использованием смесей, модифицированных полимером, в качестве РАП.Некоторые люди выражают озабоченность по поводу экологии в связи с проведением измельчения, содержащего измельченный каучук (GTR), через барабанную установку. Флорида использует небольшой процент GTR в большинстве смесей для дорожных покрытий. Калифорния и Аризона также часто используют GTR.

Какая правильная температура смеси?

Температура смеси зависит от марки асфальта, используемого в смеси: менее вязкий асфальт требует более низких температур, в то время как более вязкий асфальт требует более высоких температур. В начале проектирования смеси целевые температуры указываются для надлежащего перемешивания и уплотнения.Эти температуры должны быть адаптированы к условиям проекта (погодные условия, расстояние транспортировки и т. Д.). По возможности избегайте отклонений от расчетной температуры смеси более 25 градусов. Примечание. При работе с модифицированным связующим поставщик связующего должен предоставить рекомендации по температуре смеси.

Какая минимальная температура для асфальтобетонных смесей?

Смеси должны быть размещены и уплотнены до того, как они остынут до 185 o F, поэтому минимальная температура будет зависеть от температуры слоя, на который они помещаются, а также от условий окружающей среды.Как правило, в спецификациях агентства указывается минимально допустимая температура смеси. Некоторые спецификации будут использовать 225 o F, а другие могут использовать 250 o F.

Как убедиться, что HMA непроницаем для воды?

Обычные смеси должны быть водонепроницаемыми до тех пор, пока общее содержание воздушных пустот на месте составляет менее 7-8%. Смеси с более высоким содержанием пустот могут быть проницаемыми для воздуха и воды, что приводит к преждевременному старению и растрескиванию.

Есть ли ограничение на процентную долю RAP, используемого в новых установках? А как насчет использования РАП для ремонта старых асфальтовых дорог? Какие-нибудь ограничения? Если есть ограничения на использование RAP в новых или обновленных установках, кто устанавливает ограничения?

Институт асфальта настоятельно рекомендует использование РАП в асфальтовых смесях.RAP имеет историю положительных результатов. Указывающее агентство или владелец установят лимит для содержимого RAP. Почти все государственные дорожные департаменты теперь разрешают использование РАП. Некоторые ограничивают его использование на курсах ношения; еще меньше (один или два) полностью запрещают его использование. Большинство агентств разработали средства компенсации жесткости регенерированного асфальта из RAP путем выбора конкретного сорта первичного вяжущего. Экспертная группа по асфальтовым смесям FHWA разработала рекомендации, которые рассматриваются Ассоциацией государственных служащих автомобильных дорог и транспорта (AASHTO) в качестве руководства по выбору марки асфальтового вяжущего при использовании RAP.Эти рекомендации кратко изложены ниже.
  • При использовании 15% или менее RAP: «Марка вяжущего для смеси выбирается с учетом окружающей среды и условий движения так же, как и для первичной смеси. Регулировка уклона не производится для компенсации жесткости асфальта в RAP ».
  • При использовании RAP от 16 до 25%: «Выбранная марка вяжущего для нового асфальта на один класс ниже как по высокой, так и по низкотемпературной жесткости, чем марка вяжущего, необходимая для первичного асфальта.Например, если указанная марка связующего для первичной смеси - PG 64-22, требуемая марка для переработанной смеси будет PG 58-28 ”.
  • При использовании более 25% RAP: «Марка вяжущего для нового битумного вяжущего выбирается с использованием соответствующей таблицы смешения для высоких и низких температур. Низкотемпературный сорт на один уровень ниже, чем сорт связующего, необходимого для первичного асфальта ».

Обычно приведенные выше рекомендации применяются как к новым, так и к существующим покрытиям.Если к проекту применялась гарантия, можно было бы выбрать более консервативный подход - например, использование диаграмм смешения.

Рекомендуется, чтобы вы связались с местным дорожным агентством штата и / или поставщиком асфальтового вяжущего, чтобы узнать о преобладающих местных методах работы.

Допустимо ли использовать теоретический максимальный удельный вес (рис) для материала, полученного из кернов или распилов?

Рис (Gmm) обычно не обрабатывают материалом из сердцевин, так как это не предпочтительный метод сбора материала для этого теста.Фактически, ASTM D5361, Стандартная практика отбора проб уплотненных битумных смесей для лабораторных испытаний, не включает испытания риса в раздел «Значение и использование».
Примечание параграф 3.1 стандарта гласит: 3.1 Образцы, полученные в соответствии с процедурой, изложенной в этой практике, могут использоваться для измерения толщины, плотности, упругости или динамического модуля, прочности на растяжение, устойчивости по Маршаллу или Хвиму или для испытаний на извлечение, чтобы определить содержание асфальта, свойства асфальта и градацию смеси.На это есть несколько причин. Во-первых, отбор керна - это, естественно, деструктивный процесс, который меняет градацию. Уровень, на который смещается градация, зависит от природы родительской градации и материала. то есть полудюймовая SMA, вероятно, будет иметь больший сдвиг градаций, чем, скажем, тонкая, плотно градуированная смесь трех восьмых. Во-вторых, и что более важно, путем бурения керна вы создаете заполнитель, не покрытый асфальтом. Отсутствие покрытия может способствовать поглощению воды этими незащищенными поверхностями.Естественно, что чем более абсорбирующим является совокупность, тем серьезнее потенциальная проблема в данной ситуации. Стандарт AASHTO для риса - T-209. В нем рассматривается абсорбция в части 15 стандарта, озаглавленной «Дополнительная процедура для смесей, содержащих пористый заполнитель». Это также известно как «процедура высыхания». Он используется в смесях, произведенных с заполнителем, водопоглощение которого превышает 1,5%. Однако, хотя сбор рисового материала через сердцевины не является предпочтительным методом, это приемлемый метод, когда более предпочтительные альтернативы (образцы, полученные на заводе или в лаборатории) не подходят. имеется в наличии.Мне неизвестно о каком-либо состоянии, которое не позволяет использовать ядра для Gmm, когда нет хорошей альтернативы. Помня о предыдущем обсуждении, следует сделать все возможное, чтобы свести к минимуму любые потенциальные проблемы, которые могут возникнуть из-за образцов, вырезанных в полевых условиях. Это приводит к тому, что мышление больше - значит лучше. 6-дюймовая сердцевина будет иметь меньший процент заполнителя, затронутого керном, чем 4-дюймовая сердцевина той же дороги. Поэтому настоятельно рекомендуется, если альтернативные методы производства материалов для риса не подходят, использовать по крайней мере 6-дюймовую сердцевину.Если можно собрать более крупный образец, например, при распиловке, то это следует рассмотреть. Суждение и приемлемая на местном уровне практика, безусловно, должны быть задействованы.

Агрегат

Какой номинальный размер заполнителя следует использовать?

Толщина подъема определяет размер заполнителя. Минимальная толщина подъема должна быть как минимум в 3 раза больше номинальной макс. размер заполнителя для обеспечения возможности выравнивания заполнителя во время уплотнения для достижения требуемой плотности, а также для обеспечения непроницаемости смеси.Максимальная толщина подъема зависит также от типа используемого уплотнительного оборудования. При использовании статических катков со стальными колесами максимальная толщина подъема, которая может быть должным образом уплотнена, составляет три (3) дюйма. При использовании пневматических или вибрационных катков максимальная толщина подъема, которую можно уплотнить, практически не ограничена. Как правило, толщина подъема ограничивается 6 или 8 дюймами. Правильная установка становится проблемой для лифтов толщиной более 8 или 8 дюймов. Для смесей с открытой фракцией уплотнение не является проблемой, поскольку предполагается, что эти типы смесей остаются очень открытыми.Следовательно, агрегат максимального размера может составлять до 80 процентов от толщины подъемника.

Строительство

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь». С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия.Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия. Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:
  • Дождь охлаждает асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) - никогда не укладывайте лужи, идет ли дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • построить строительный шов с вертикальной облицовкой
  • правильно утилизировать весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Какую толщину подъемника следует использовать?

Минимальная толщина подъема должна быть как минимум в 3 раза больше номинальной макс. размер заполнителя для обеспечения возможности выравнивания заполнителя во время уплотнения для достижения требуемой плотности, а также для обеспечения непроницаемости смеси. Максимальная толщина подъема зависит также от типа используемого уплотнительного оборудования.При использовании статических катков со стальными колесами максимальная толщина подъема, которая может быть должным образом уплотнена, составляет три (3) дюйма. При использовании пневматических или вибрационных катков максимальная толщина подъема, которую можно уплотнить, практически не ограничена. Как правило, толщина подъема ограничивается 6 или 8 дюймами. Правильная установка становится проблемой для лифтов толщиной более 8 или 8 дюймов. Для смесей с открытой фракцией уплотнение не является проблемой, поскольку предполагается, что эти типы смесей остаются очень открытыми. Следовательно, агрегат максимального размера может составлять до 80 процентов от толщины подъемника.

Какая правильная температура смеси?

Температура смеси будет зависеть от марки асфальта, используемого в смеси. Чем менее вязкий асфальт, тем ниже должна быть температура. Чем более вязкий асфальт, тем выше может быть температура. При смешивании расчетные температуры указываются для правильного смешивания и уплотнения. Это хорошие цели для начала проекта. Однако их необходимо будет адаптировать к условиям проекта (погодные условия, расстояние транспортировки и т. Д.).). По возможности избегайте отклонений от расчетной температуры смеси более 25 градусов. Примечание. При работе с модифицированным связующим поставщик связующего должен предоставить рекомендации по температуре смеси.

Какая минимальная температура для асфальтобетонных смесей?

Смеси должны быть размещены и уплотнены до того, как они остынут до 185 o F, поэтому минимальная температура будет зависеть от температуры слоя, на который они помещаются, а также от условий окружающей среды. Графики температурных сеансов представлены на стр. 6-6, рис.6.03 нового МС-22 и стр. 234 старого МС-22. Как правило, в спецификациях агентства указывается минимально допустимая температура смеси. Некоторые спецификации будут использовать 225 o F, а другие могут использовать 250 o F.

Как узнать, правильно ли перемешана смесь?

Когда все частицы заполнителя покрыты асфальтом. Крупные частицы заполнителя всегда покрываются в последнюю очередь. Если крупные частицы заполнителя полностью покрыты, смесь тщательно перемешивается.Обычно мы видим проблемы со смешиванием только на установках периодического действия. Производитель пытается перемешать каждую партию как можно быстрее (вероятно, примерно за 30 секунд), что может быть или не соответствовать времени перемешивания. Типичные спецификации устанавливают минимальное процентное содержание покрытых частиц от 90 до 95 процентов. Процедура счета Росс для определения этих процентов (ASTM-D2489 или AASHTO T195) описана на страницах с 4-41 по 4-44 нового MS-22 и страницах 162 и 163 старого MS-22.

Необходимо тщательно соблюдать минимальное время перемешивания для соответствия указанным требованиям, чтобы избежать избыточного окисления асфальтовых пленок на частицах заполнителя, поскольку он подвергается воздействию воздуха (кислорода) во время процесса перемешивания.

Как правило, мы не видим этой проблемы с барабанными миксами. Смесь остается в смесительной части барабана в течение гораздо более длительных периодов времени (возможно, от 2 до 3 минут), чем в мельнице периодической установки, поэтому частицы заполнителя очень хорошо покрываются. Имейте в виду, что нас не так беспокоит окисление в барабанных смесях, поскольку смесительная часть барабанного смесителя, по сути, представляет собой бескислородную атмосферу.

Другой способ взглянуть на это: в партии смеси в 6000 фунтов содержится около 5600 фунтов.агрегата и около 400 фунтов. асфальта. Плотный заполнитель имеет площадь поверхности около 35 кв. Футов на фунт, или 196 000 кв. Футов / 6000 фунтов партии; 400 фунтов асфальта - это около 48 галлонов. В процессе смешивания требуется 48 галлонов асфальта и красить около 3,8 футбольных полей. Когда частицы заполнителя покрыты, он перемешивается.

Что следует использовать в качестве разделительной смеси для платформ и роликов грузовиков?

Слишком часто мы все еще видим, что дизельное топливо используется в качестве разделительного агента. Дизельное топливо - растворитель.Любое избыточное количество растворяет асфальтовые пленки на частицах заполнителя, тем самым загрязняя смесь. Коммерческие разделительные агенты для смесей легко доступны, и их следует использовать. Обычно это мыло, эмульгированный воск или другие материалы, устойчивые к прилипанию, которые не загрязняют смесь. Несколько предложений: мешок гашеной извести, смешанный с 1000 галлонами воды, или бутылка средства для мытья посуды (Joy), смешанного с водой. Порции зависят от воды, с которой он смешан. Для мягкой воды не потребуется столько же, сколько для жесткой.

По нашему опыту, для модифицированного асфальта требуется специальный разделительный агент. Обратитесь в местный департамент транспорта штата за списком одобренных антиадгезионных средств.

Какова правильная скорость асфальтоукладчика?

Скорость асфальтоукладчика должна быть приспособлена для смешивания производства и доставки. Необходимо приложить все усилия для поддержания постоянной скорости асфальтоукладчика. На эту постоянную скорость влияют несколько факторов. При стабильном производственном и производственном потоке скорость асфальтоукладчика будет зависеть от толщины подъема и ширины прохода укладчика.Толстый подъемник - меньшая скорость; чем тоньше подъемник - тем быстрее скорость. Более широкий проход - более медленная скорость; более узкий проход - более высокая скорость. Большинство производителей оборудования указывают максимальную скорость для своего асфальтоукладчика. Во многих спецификациях агентств указана максимальная скорость, например 30 или 40 футов в минуту.

Почему у проезжей части асфальтоукладчика есть богатая блестящая полоса посередине с тусклыми, рваными краями?

В асфальтоукладчике слишком много свинца.

Почему на проходе для асфальтоукладчика появляются яркие блестящие полосы с каждой стороны и тусклый, рваный вид посередине?

В асфальтоукладчике недостаточно свинца. Примечание : Выглаживающие плиты для асфальтоукладчиков должны иметь немного больший гребень на передней кромке, чем на задней кромке - обычно около 1/8 дюйма. Это может зависеть от производителя оборудования и / или ширины прохода асфальтоукладчика. Даже если задняя кромка стяжки должна быть ровной или ровной, передняя кромка все равно должна иметь увеличенный гребень.

Есть ли ограничение на процентную долю RAP, используемого в новых установках. А как насчет использования РАП для ремонта старых асфальтовых дорог? Какие-нибудь ограничения? Если есть ограничения на использование RAP в новых или обновленных установках, кто устанавливает ограничения?

Институт асфальта настоятельно рекомендует использование РАП в асфальтовых смесях.RAP имеет историю положительных результатов. Что касается ограничения содержания RAP, это решение определяющего агентства или владельца. Почти все государственные дорожные департаменты теперь разрешают использование РАП. Некоторые ограничивают его использование на курсах ношения; еще меньше (один или два) вообще не позволяют его использовать. Большинство агентств разработали средства компенсации жесткости регенерированного асфальта из RAP путем выбора конкретного сорта первичного вяжущего. Экспертная группа по асфальтовым смесям FHWA разработала рекомендации, которые рассматриваются Ассоциацией государственных служащих автомобильных дорог и транспорта (AASHTO) в качестве руководства по выбору марки асфальтового вяжущего при использовании RAP.Эти рекомендации кратко изложены ниже.
  • При использовании 15% или менее RAP: «Марка вяжущего для смеси выбирается с учетом окружающей среды и условий движения так же, как и для первичной смеси. Регулировка уклона не производится для компенсации жесткости асфальта в RAP ».
  • При использовании RAP от 16 до 25%: «Выбранная марка вяжущего для нового асфальта на один класс ниже как по высокой, так и по низкотемпературной жесткости, чем марка вяжущего, необходимая для первичного асфальта.Например, если указанная марка связующего для первичной смеси - PG 64-22, требуемая марка для переработанной смеси будет PG 58-28 ”.
  • При использовании более 25% RAP: «Марка вяжущего для нового битумного вяжущего выбирается с использованием соответствующей таблицы смешения для высоких и низких температур. Низкотемпературный сорт на один уровень ниже, чем сорт связующего, необходимого для первичного асфальта ».

Обычно приведенные выше рекомендации применяются как к новым, так и к существующим покрытиям.Если к проекту применялась гарантия, можно было бы выбрать более консервативный подход - например, использование диаграмм смешения.

Рекомендуется, чтобы вы связались с местным дорожным агентством штата и / или поставщиком асфальтового вяжущего, чтобы узнать о преобладающих местных методах работы.

Размещение

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь».«С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия.Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:
  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) - никогда не укладывайте лужи, идет ли дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • построить строительный шов с вертикальной облицовкой
  • правильно утилизировать весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Как определить, сколько асфальта требуется для проекта?

Вот процесс:
  1. Рассчитайте количество кубических футов для мощения. (Не забудьте преобразовать толщину в футы - разделив на 12 дюймов на 1 фут). 10 ′ x 25 ′ x (4/12) ’= 83,3 кубических фута HMA
  2. Асфальтовая смесь
  3. обычно весит от 142 до 148 фунтов на кубический фут (PCF) на месте.Используйте 148 PCF.
  4. Рассчитайте необходимый тоннаж. (не забудьте перевести фунты в тонны; 2000 фунтов на тонну).

83,3 кубических фута x 148 PCF = 12328 фунтов смеси = 12328/2000 тонн = 6,1 тонны

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо.Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Для достижения достаточного уплотнения необходимы надлежащие методы прокатки и соответствующее оборудование. Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату.Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Какова правильная скорость асфальтоукладчика?

Скорость асфальтоукладчика должна быть приспособлена для смешивания производства, доставки и уплотнения; с упором на уплотнение. Необходимо приложить все усилия для поддержания постоянной скорости асфальтоукладчика. На эту постоянную скорость влияют несколько факторов. При постоянном производственном потоке и подаче скорость асфальтоукладчика будет зависеть от толщины подъема (толще / медленнее; тоньше / быстрее) и ширины прохода асфальтоукладчика шире / медленнее; узкий / быстрее).Большинство производителей оборудования указывают максимальную скорость для своего асфальтоукладчика. Во многих спецификациях агентств указана максимальная скорость, например 30 или 40 футов в минуту. Большинство производителей уплотнителей рекомендуют максимальную скорость роликов 3 мили в час, и чаще всего для уплотнения требуется более одного прохода роликов. Поэтому количество и тип используемых роликов очень важны.

Можно ли сразу охладить уложенный мат водой для раннего движения?

Мы не рекомендуем распылять воду на свежеуложенную горячую асфальтовую смесь (HMA), чтобы мат быстрее охладился и открылся для движения.Во-первых, распыление воды на горячий коврик не очень эффективно, поскольку вода должна правильно стекать на новую поверхность и лишь временно охлаждает корку, при этом внутренняя температура HMA не сильно изменяется. Кроме того, существует опасение, что вода может вызвать эффект вспенивания горячего битумного вяжущего, что сделает HMA менее устойчивым при движении. Мы считаем, что лучше дать коврику остыть естественным путем.

Что допустимо с точки зрения стоячей воды или образования луж на стоянках и других асфальтовых покрытиях?

Институт асфальта рекомендует поперечный уклон между 1.От 5 до 3,0% на всех покрытиях и еще более крутой уклон от 3 до 6% на обочинах. Сохранение уклона не менее 1,5% на стоянках обеспечит надлежащий дренаж поверхности (отсутствие луж или ванн для птиц) и минимизирует инфильтрацию, аквапланирование и вредное воздействие воды.

Уплотнение

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь».«С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия.Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:
  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) - никогда не укладывайте лужи, идет ли дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • построить строительный шов с вертикальной облицовкой
  • правильно утилизировать весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Сколько роликов требуется?

Вопреки распространенному мнению, количество катков, необходимых для надлежащего уплотнения, основывается на размещенной площади в ярдах, а не на производственном или доставочном тоннаже. Скорость ролика должна быть ограничена до 3 миль в час. Используя эту скорость и ширину валика, можно рассчитать степень покрытия. Ширина прохода асфальтоукладчика и скорость могут дать вам квадратный метр. Количество необходимых покрытий покажет вам общую площадь в квадратных ярдах, которую каток должен покрыть.Для очень небольших работ может хватить одного ролика. В очень больших проектах может потребоваться шесть или восемь роликов. Многие проекты уплотняются тремя роликами: роликом разрушения, роликом уплотнения и роликом чистовой обработки. В большинстве средних проектов используются два катка - вибрационный каток со стальными колесами для разрушения и уплотнения и тяжелое статическое стальное колесо для чистовой прокатки.

Иногда в соответствии с техническими требованиями агентства требуется использовать легкий (контактное давление от 65 до 75 фунтов на квадратный дюйм) пневматический валик для замешивания или герметизации поверхности перед чистовой прокаткой.

Какое рекомендуемое содержание воздушных пустот для уплотнения асфальтового покрытия?

Следует прилагать усилия для уменьшения пустот в уплотненном воздухе от 7% до 3%. При 8% или выше взаимосвязанные пустоты, которые позволяют воздуху и влаге проникать в дорожное покрытие, снижая его долговечность. С другой стороны, если воздушные пустоты упадут ниже 3%, будет недостаточно места для расширения асфальтового вяжущего в жаркую погоду. Когда содержание пустот падает до 2% или менее, смесь становится пластичной и нестабильной.

Как контролируется содержание воздушных пустот?

Воздушные пустоты обратно пропорциональны плотности уплотненной смеси. При указании требований к плотности количество пустот регулируется обратно пропорционально. Имейте в виду, что плотность - это относительный термин по сравнению с целевой плотностью лабораторно уплотненной смеси, максимальной теоретической плотностью или плотностью контрольной полосы. Процедуры использования трех методов изложены на страницах с 7-17 по 7-21 нового MS-22 и на странице 241 старого MS-22.

Какие должны быть требования к уплотнению?

Тестирование должно проводиться на основе случайной выборки с минимум пятью тестами на партию (требования агентства определяют «партию» как «дневное или полное дневное производство»).Среднее значение пяти определений плотности должно быть равно или больше:
  1. 96% лабораторной плотности без теста менее 94%
  2. 92% от максимального теоретического значения без теста менее 90%.
  3. 99% плотности контрольной полосы

Как лучше всего проверить плотность?

Ядерные манометры обычно используются для испытания плотности из-за простоты и скорости, с которой могут быть выполнены испытания. Это позволяет проводить гораздо больше тестов - более пяти минимальных для лучшего статистического результата. Внимание! : Датчик ядерной плотности должен быть соотнесен с плотностями активной зоны, которые взяты из того же места, что и ядерный датчик. Это следует делать для каждой отдельной смеси, которую можно использовать.

Заголовок спойлера

Не существует предсказуемого значения или «практического числа» для разницы в содержании воздушных пустот в исходных и повторно нагретых образцах. Общая тенденция заключается в том, что повторно нагретые образцы имеют более высокие воздушные пустоты, чем исходные уплотненные образцы.Поглощение и отверждение или повышение жесткости битумного вяжущего в повторно нагретых образцах, вероятно, вызывает эту разницу. Повторно нагретые образцы можно использовать для полной проверки результатов исходного образца. Прежде чем приписывать какую-либо значительную точность результатам повторного нагрева образца, следует разработать корреляцию для пустот повторно нагретого воздуха образца и пустот исходного воздуха образца путем выполнения серии сравнительных испытаний.

Что может вызвать растрескивание поверхности только что уложенного асфальтобетона? Растрескивание произошло при пробивной и чистовой прокатке.

Не зная, как выглядит растрескивание поверхности, нам трудно определить проблему. Может ли «поверхностное растрескивание» указывать на растрескивание в процессе прокатки? Это мелкие микротрещины на поверхности, расположенные на расстоянии одного-двух дюймов друг от друга и идущие поперек направления прокатки. Причина в том, что коврик катится по слишком горячей и / или слишком нежной смеси. Вы можете обратиться к страницам 6-9 нового MS-22 и страницам 219-220 старого руководства MS-22, если вы не уверены, что такое проверка.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо. Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Для достижения достаточного уплотнения необходимы надлежащие методы прокатки и соответствующее оборудование.Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми опорами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Что представляет собой процесс или как устанавливается или определяется целевое значение плотности?

Есть несколько способов установить целевые значения плотности.Некоторые из наиболее распространенных подходов включают:
  • Указание процентной доли веса единицы из расчета лабораторной смеси. Пример: 96% веса единицы Маршалла
  • Установление стоимости на основе результатов, достигнутых на тест-полоске на месте проекта. Пример: 98% плотности тест-полоски.
  • Указание процента от максимального веса единицы. Пример: 94% от максимального веса единицы.

Указание некоторого минимального процента от максимального веса единицы продукции получило признание многих агентств.Максимальный удельный вес иногда называют «плотностью твердого тела». Это значение основано на максимальном удельном весе асфальтовой смеси, также известном как значение Rice или G мм в Superpave. Максимальный удельный вес определяется путем умножения значения Rice на 62,4 фунта на кубический фут (PCF). Например, 2,500 - это типичное значение Райса. 2,500 X 62,4 = 156,0 ПКФ. Тогда, если указано 95% уплотнение, минимально допустимый удельный вес будет: 0,95 X 156,0 = 148,2 PCF. Если указано 93% твердого вещества или в уплотненном мате допускается не более 7% воздушных пустот, то минимальное целевое значение будет 145.1 PCF (0,93 X 156,0).

Толщина уплотняемого слоя влияет на его уплотняемость. Слишком тонкий мат не обеспечивает достаточной обрабатываемости, а слишком толстый мат может быть нестабильным. Для уплотнения смесь должна иметь контролируемую удобоукладываемость. Обычно для плотных смесей требуется подъемная толщина в 3-4 раза превышающая номинальный максимальный размер (NMS) заполнителя. Например, смесь, содержащая ½-дюймовый камень NMS, должна быть помещена на глубину уплотнения, по крайней мере, от 1-½ до 2 дюймов.Если смесь верхнего размера ½ дюйма помещается на глубину уплотнения 1 дюйм, мат может тянуться и порваться, а камни могут быть разбиты роликами. Таким образом, «глубина укладки» действительно влияет на возможность получения надлежащего уплотнения. Целевое значение уплотнения, зависящее от свойства материала - максимального удельного веса - не изменяется, но изменяется вероятность достижения целевой плотности.

Толщина подъема

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь».«С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия.Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:
  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) - никогда не укладывайте лужи, идет ли дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • построить строительный шов с вертикальной облицовкой
  • правильно утилизировать весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо. Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Для достижения достаточного уплотнения необходимы надлежащие методы прокатки и соответствующее оборудование.Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату. Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Какова рекомендуемая минимальная толщина подъема для размещения HMA?

Минимальная толщина при подъеме должна быть как минимум в 3 раза больше номинального максимального размера заполнителя, чтобы обеспечить выравнивание заполнителей во время уплотнения для достижения требуемой плотности, а также для обеспечения непроницаемости смеси.Максимальная толщина подъема также зависит от типа используемого уплотнительного оборудования. При использовании статических катков со стальными колесами максимальная толщина подъема, которая может быть должным образом уплотнена, составляет 3 дюйма. При использовании пневматического или вибрационного катка максимальная толщина подъема, которую можно уплотнить, практически не ограничена. Как правило, толщина подъема ограничивается 6 или 8 дюймами. Правильная установка становится проблемой для лифтов толщиной более 6 или 8 дюймов. Для смесей с открытой фракцией уплотнение не является проблемой, поскольку предполагается, что эти типы смесей остаются очень открытыми.Следовательно, агрегат максимального размера может составлять до 80 процентов от толщины подъемника.

Погода

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь». С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия.Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия. Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:
  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) - никогда не укладывайте лужи, идет ли дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • построить строительный шов с вертикальной облицовкой
  • правильно утилизировать весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Можно ли укладывать асфальт под дождем (мелкая морось)?

Невозможно начать укладку во время дождя. Если дождь начнется после того, как началась укладка, работа может продолжаться до тех пор, пока нет стоячей воды и дождь не будет слишком сильным. Первоочередной задачей является достижение адекватного уплотнения, так как смесь будет охлаждаться намного быстрее из-за испарительного охлаждения, если ее укладывать на влажную поверхность или дождь падает на неуплотненный мат. Потребуются дополнительные усилия по уплотнению, а мониторинг температуры является ключом к достижению адекватной плотности.

Заводские операции

Есть ли проблема с измельчением и переработкой асфальтобетонных смесей, в которых использовались модифицированные полимером связующие?

Вообще говоря, нет особых проблем с использованием смесей, модифицированных полимером, в качестве РАП. Некоторые люди выражают озабоченность по поводу экологии в связи с проведением измельчения, содержащего измельченный каучук (GTR), через барабанную установку. Флорида использует небольшой процент GTR в большинстве смесей для дорожных покрытий. Калифорния и Аризона также часто используют GTR.

Как узнать, правильно ли перемешана смесь?

Когда все частицы заполнителя покрыты асфальтом. Крупные частицы заполнителя всегда покрываются в последнюю очередь. Если крупные частицы заполнителя полностью покрыты, смесь тщательно перемешивается. Обычно мы сталкиваемся с проблемами смешивания только на установках периодического действия, где производитель обрабатывает каждую партию как можно быстрее (вероятно, примерно за 30 секунд), что может быть или не быть адекватным временем смешивания. Типичные спецификации устанавливают минимальное процентное содержание покрытых частиц от 90 до 95 процентов.Процедура счета Росс для определения этих процентов (ASTM-D2489 или AASHTO T195) описана на страницах с 4-41 по 4-44 нового MS-22 и страницах 162 и 163 старого MS-22.

Необходимо тщательно соблюдать минимальное время перемешивания для соответствия указанным требованиям, чтобы избежать избыточного окисления асфальтовых пленок на частицах заполнителя, поскольку он подвергается воздействию воздуха (кислорода) во время процесса перемешивания.

Как правило, мы не видим этой проблемы с барабанными миксами. Смесь остается в смесительной части барабана в течение гораздо более длительных периодов времени (возможно, от 2 до 3 минут), чем в мельнице периодической установки, поэтому частицы заполнителя очень хорошо покрываются.Имейте в виду, что нас не так беспокоит окисление в барабанных смесях, поскольку смесительная часть барабанного смесителя, по сути, представляет собой бескислородную атмосферу.

Другой способ взглянуть на это: в партии смеси в 6000 фунтов содержится около 5600 фунтов. агрегата и около 400 фунтов. асфальта. Плотный заполнитель имеет площадь поверхности около 35 кв. Футов на фунт, или 196 000 кв. Футов / 6000 фунтов партии; 400 фунтов асфальта - это около 48 галлонов. Для процесса смешивания требуется 48 галлонов асфальта и около 3 красок.8 футбольных полей. Когда частицы заполнителя покрыты, он перемешивается.

Перекрестки

Как спроектировать асфальтовую перегородку хорошего качества?

Теперь существуют инструменты для повышения производительности от пересечений HMA. Хорошо спроектированные, правильно построенные перекрестки HMA обеспечивают экономичное и долговечное покрытие с минимальным нарушением движения транспорта. Чтобы получить эти преимущества, мы должны осознавать, что покрытия на перекрестках подвержены экстремальным нагрузкам. Обычных материалов и методов может быть недостаточно.Должна быть соответствующая структура дорожного покрытия, выбранные материалы, подходящие методы строительства и особое внимание к деталям в процессе. Чтобы узнать больше о том, как проектировать и строить высокопроизводительные перекрестки с HMA, см. Следующую серию статей журнала ASPHALT.

Существуют ли какие-либо практические правила для асфальтового покрытия контейнерного терминала относительно максимальной нагрузки, не вызывающей повреждений?

Никакое эмпирическое правило не отвечает на ваш вопрос. Есть две проблемы:
  1. Соответствует ли конструкция дорожного покрытия (земляное полотно, основание, основание и все слои асфальта) нагрузкам? Вам необходимо приобрести нашу инструкцию MS-23, Расчет толщины асфальта для тяжелых колесных нагрузок .
  2. Является ли поверхность горячего асфальта достаточно жесткой, чтобы противостоять деформации (борозды или вмятины)? Это зависит от многих факторов, таких как жесткость исходной смеси, возраст смеси (становится жестче со временем), температура смеси во время загрузки, сама загрузка, продолжительность приложенной нагрузки и т. Д. Обычно это не проблема, но если это так, обычно можно решить, поместив несколько стальных (или других твердых материалов) пластин ниже точечной нагрузки, чтобы распределить нагрузку по более широкой области.

Как соотносятся воздушные пустоты в лабораторно уплотненных образцах «повторно нагретой» асфальтобетонной смеси с воздушными пустотами «исходных» образцов смеси (в том виде, в каком они произведены, без повторного нагрева)?

Не существует предсказуемого значения или «практического числа» для разницы в содержании воздушных пустот в исходных и повторно нагретых образцах. Общая тенденция заключается в том, что повторно нагретые образцы имеют более высокие воздушные пустоты, чем исходные уплотненные образцы. Поглощение и отверждение или повышение жесткости битумного вяжущего в повторно нагретых образцах, вероятно, вызывает эту разницу.

Повторно нагретые образцы можно использовать для полной проверки результатов исходного образца. Прежде чем приписывать какую-либо значительную точность результатам повторного нагрева образца, следует разработать корреляцию для пустот повторно нагретого воздуха образца и пустот исходного воздуха образца путем выполнения серии сравнительных испытаний.

Есть ли проблема с измельчением и переработкой асфальтобетонных смесей, в которых использовались модифицированные полимером связующие?

Вообще говоря, особых проблем с использованием смесей, модифицированных полимером, в качестве РАП быть не должно.Некоторые люди выражают озабоченность по поводу окружающей среды по поводу проведения измельчения, содержащего измельченный каучук (GTR), через барабанную установку. Флорида использует небольшой процент GTR в большинстве смесей для дорожных покрытий. Калифорния и Аризона также часто используют GTR.

Какая правильная температура смеси?

Температура смеси будет зависеть от марки асфальта, используемого в смеси. Чем менее вязкий асфальт, тем ниже должна быть температура. Чем более вязкий асфальт, тем выше может быть температура.При смешивании расчетные температуры указываются для правильного смешивания и уплотнения. Это хорошие цели для начала проекта. Однако их необходимо будет адаптировать к условиям проекта (погодные условия, расстояние транспортировки и т. Д.). По возможности избегайте отклонений от расчетной температуры смеси более 25 градусов. Примечание : При работе с модифицированным связующим поставщик связующего должен предоставить рекомендации по температуре смеси.

Обработка поверхности

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us с отчетом 05-02.

Какой тип асфальта следует использовать?

Жидкий асфальт, такой как быстроотверждающаяся эмульсия (RS-1,2 или CRS-1,2 включает модифицированные) 1 Обрезанные асфальты в некоторых областях в зависимости от нормативов EPA, которые включают RC-250, 800 или 3000, обычно использовал. Высококвалифицированные экипажи также могут использовать АС-5 или 10.

Сколько асфальта следует нанести на заполнитель? (стружка)

Количество нанесенного асфальта зависит от трех факторов:
  1. Состояние существующей поверхности
  2. Объем трафика
  3. Средний размер частиц стружки.

Следует сделать поправку на состояние поверхности - сухая, потрескавшаяся, сильно потрескавшаяся, промытая, просачивающаяся и т. Д. Для меньших объемов движения требуется большее количество асфальта, чем для более интенсивного движения. Средний размер частиц должен быть внедрен в асфальт на 60-75%. Более высокий трафик должен быть ближе к 60%, а более низкий трафик должен быть ближе к 75% коэффициенту встраивания. Средний размер частиц - это средний размер стружки в градации, для этого числа можно использовать 50% проходной размер.

Нужно ли чистить чипы?

Да - AASHTO T-11 Запыленность должна быть менее 0,75

Что вызывает появление полос на дорожных покрытиях в стружколомах?

Несколько факторов могут привести к такому виду; неправильные размеры форсунок распределителя, давление насоса, высота распылителя, угол форсунки и холодный асфальт.

Смесь разделительных агентов

Что следует использовать в качестве разделительной смеси для платформ и роликов грузовиков?

Слишком часто мы все еще видим, что дизельное топливо используется в качестве разделительного агента.Дизельное топливо - растворитель. Любое избыточное количество растворяет асфальтовые пленки на частицах заполнителя, тем самым загрязняя смесь. Коммерческие разделительные агенты для смесей легко доступны, и их следует использовать. Обычно это мыло, эмульгированный воск или другие материалы, устойчивые к прилипанию, которые не загрязняют смесь. По нашему опыту, для модифицированного асфальта требуется специальный разделительный агент. Обратитесь в местный департамент транспорта штата за списком одобренных антиадгезионных средств.

Особые приложения

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us с отчетом 05-02.

Есть ли способ окрасить асфальтовое покрытие в другие оттенки, кроме черного и серого?

Хотя широко не используется, существуют способы окраски асфальтового покрытия, отличные от обычных черных и серых оттенков. Второй и третий варианты считаются специализированными продуктами, и дополнительную информацию можно получить, связавшись с отдельными производителями.
  • Используйте заполнитель естественного цвета. По мере того, как асфальтовое вяжущее изнашивается из-за дорожного движения, цвет заполнителя становится очевидным.
  • Используйте добавку в битумное вяжущее. Различные соединения железа могут придавать дорожному покрытию красный, зеленый, желтый или оранжевый оттенок, в то время как другие цвета могут быть получены с использованием различных металлических добавок. Было использовано специальное «синтетическое» связующее, не содержащее асфальтенов, поскольку оно легче окрашивается. Этот метод тонирования смеси позволяет цвету проникать на всю глубину материала, поэтому не возникает проблем с истиранием поверхности.
  • Покройте поверхность материалом, который проникает в пустоты и хорошо сцепляется с асфальтовым покрытием, например, усиленной эпоксидной смолой акриловой эмульсией.Доступны многие цвета. Следует проявлять осторожность, чтобы не снижать поверхностное трение, особенно если тротуар используется для движения транспортных средств. Одним из возможных недостатков этого метода является то, что поверхность со временем изнашивается и ее необходимо обновлять.

Существуют ли какие-либо практические правила для асфальтового покрытия контейнерного терминала относительно максимальной нагрузки, не вызывающей повреждений?

Нет практических ответов на ваш вопрос. Есть две проблемы:
  1. Соответствует ли конструкция дорожного покрытия (земляное полотно, основание, основание и все слои асфальта) нагрузкам? Вам необходимо приобрести нашу инструкцию MS-23, Расчет толщины асфальта для тяжелых колесных нагрузок .
  2. Является ли поверхность горячего асфальта достаточно жесткой, чтобы противостоять деформации (борозды или вмятины)? Это зависит от многих факторов, таких как жесткость исходной смеси, возраст смеси (становится жестче со временем), температура смеси во время загрузки, сама загрузка, продолжительность приложенной нагрузки и т. Д. Обычно это не проблема, но если это так, обычно можно решить, поместив несколько стальных (или других твердых материалов) пластин ниже точечной нагрузки, чтобы распределить нагрузку по более широкой области.

Как соотносятся воздушные пустоты в лабораторно уплотненных образцах «повторно нагретой» асфальтобетонной смеси с воздушными пустотами «исходных» образцов смеси (в том виде, в каком они произведены, без повторного нагрева)?

Не существует предсказуемого значения или «практического числа» для разницы в содержании воздушных пустот в исходных и повторно нагретых образцах. Общая тенденция заключается в том, что повторно нагретые образцы имеют более высокие воздушные пустоты, чем исходные уплотненные образцы. Поглощение и отверждение или повышение жесткости битумного вяжущего в повторно нагретых образцах, вероятно, вызывает эту разницу.

Повторно нагретые образцы можно использовать для полной проверки результатов исходного образца. Прежде чем приписывать какую-либо значительную точность результатам повторного нагрева образца, следует разработать корреляцию для пустот повторно нагретого воздуха образца и пустот исходного воздуха образца путем выполнения серии сравнительных испытаний.

Устранение неисправностей

Разрешить строительным бригадам асфальтировать под дождем?

Этот общий вопрос может означать разные вещи для разных людей из-за большого количества осадков, охватываемых словом «дождь».«С одной стороны, случайные легкие брызги воды не должны приводить к остановке работы. Однако постоянный ливень, легкий или сильный, должен привести к прекращению работ по укладке дорожного покрытия. Чтобы избежать отходов, в некоторых штатах есть словоблудие в своих спецификациях, в которых говорится, что грузовики, направляющиеся на проект, когда начинается дождь, могут быть поставлены на риск подрядчика. Также имейте в виду, что поверхность, на которой вы укладываете асфальт, может повлиять на ваше решение. Укладка на твердую, устойчивую, хорошо дренирующуюся основу из дробленого заполнителя может дать больше возможностей, чем при укладке тонкого асфальтового покрытия.Дождь или нет, новое покрытие необходимо положить на прочное, устойчивое основание. Важные идеи, о которых следует помнить, когда дело касается дождя:
  • дождь охладит асфальтовую смесь и может затруднить получение надлежащего уплотнения
  • асфальтовые подъемники должны иметь возможность должным образом сцепляться друг с другом, и влага может препятствовать этому соединению.
  • Лужи, покрытые HMA, превращаются в пар, что может вызвать отслоение (отделение битумного вяжущего от заполнителя) - никогда не укладывайте лужи, идет ли дождь или нет

Если вы временно приостанавливаете укладку мощения из-за дождя, не забудьте:

  • Все грузовики должны быть покрыты тентом
  • построить строительный шов с вертикальной облицовкой
  • правильно утилизировать весь материал, оставшийся в бункере
  • будьте осторожны, чтобы не оставлять грязь и грязь на проект

Асфальтовые покрытия рассчитаны на долгие годы, поэтому не позволяйте ощущению срочности выполнения работы быстро, позволяя вам принимать решения, которые могут сократить срок службы дорожного покрытия на годы.

Есть ли у AI рекомендации по применению герметика для асфальтобетона?

Информацию о топливостойких битумных герметиках можно найти на сайте www.aaptp.us вместе с отчетом 05-02.

Пропуск для асфальтоукладчика имеет насыщенную блестящую полосу посередине с тусклыми, рваными краями.

В асфальтоукладчике слишком много свинца.

От чего у прохода для асфальтоукладчика появляются яркие блестящие полосы с каждой стороны и тусклый, рваный вид посередине.

В асфальтоукладчике недостаточно свинца. Примечание : Выглаживающие плиты для асфальтоукладчиков должны иметь немного больший гребень на передней кромке, чем на задней кромке - обычно около 1/8 дюйма. Это может зависеть от производителя оборудования и / или ширины прохода асфальтоукладчика. Даже если задняя кромка стяжки должна быть ровной или ровной, передняя кромка все равно должна иметь увеличенный гребень.

Можно ли использовать для смесей Superpave то же оборудование для укладки, которое использовалось для обычных смесей?

Да. Однако, поскольку смеси Superpave имеют тенденцию быть более крупнозернистыми и содержат модифицированные связующие чаще, чем обычные смеси, надлежащие методы строительства более важны, чем когда-либо.Сегрегация более вероятна при использовании более грубых смесей, если не используются надлежащее оборудование и методы. Плотность также может быть труднее достичь с помощью смесей Superpave. Для достижения достаточного уплотнения необходимы надлежащие методы прокатки и соответствующее оборудование. Разрывная прокатка смесей Superpave обычно выполняется сразу за асфальтоукладчиком, когда смесь самая горячая. Некоторые подрядчики обнаружили, что иногда необходимы дополнительные и / или более тяжелые катки. Пневматические ролики с резиновыми колесами работают хорошо, но при использовании модифицированного полимером асфальта имеют тенденцию прилипать к мату.Ручная работа должна быть сведена к минимуму. Шнеки асфальтоукладчика должны подавать в шов достаточное количество хорошо рассортированного (не расслоенного) материала, чтобы обеспечить образование шва с низким уровнем пустот и проницаемостью.

Что может вызвать растрескивание поверхности только что уложенного асфальтобетона? Растрескивание произошло при пробивной и чистовой прокатке.

Не зная, как выглядит растрескивание поверхности, нам трудно определить проблему. Может ли «поверхностное растрескивание» быть проверенным растрескиванием от операции прокатки? «Проверка» - это развитие мелких микротрещин на поверхности, расположенных на расстоянии одного-двух дюймов друг от друга и идущих поперек направления прокатки.Причина - скатывание, когда мат слишком горячий и / или смесь слишком нежная. Вы можете обратиться к нашим страницам 6-6 нового руководства MS-22 и страницам 219 и 220 старого MS-22, если вы не уверены, что такое проверка взлома.

Железные дороги

Есть ли у AI какая-нибудь информация об асфальте и его использовании в полотнах железных дорог?

Информацию о железной дороге можно найти в разделе «Инженерия».

Вы также можете посетить веб-страницу на веб-сайте Университета Кентукки, где вы можете загрузить документы, PowerPoints, а также компьютерную программу под названием KENTRACK, которая представляет собой компьютерную программу для горячего асфальта и железнодорожного полотна с обычным балластом.

Асфальтобетон - обзор

6.6.2 Нестабильность

Асфальтобетонные покрытия по своей природе неоднородны и демонстрируют нестабильность (несовместимость), которая может иметь серьезные последствия для механических свойств асфальтобетонной смеси для проезжей части (Masad et al., 2009). Градиенты свойств наиболее сильны по толщине слоев асфальтобетона. Основными источниками неоднородности (и нестабильности) являются (i) старение и (ii) изменение температурного профиля (Dave et al., 2010). Таким образом, термин долгосрочная стабильность относится к долговечности асфальта не только в его первоначальном виде, но и в виде цементов для асфальтовых покрытий. После применения асфальта в качестве асфальта для мощения он подвергается воздействию экстремальных условий окружающей среды: (i) высоких температур, особенно в южных регионах США, (ii) отрицательных температур, особенно в северных штатах США. , (iii) атмосферное излучение и (iv) механическое напряжение.Следовательно, необходимо учитывать потенциальные реологические проблемы, а также химические аспекты.

Асфальтены и полярные ароматические углеводороды играют фундаментальную роль в определении механических и реологических свойств битумов (индекса пенетрации (PI) и кинематической вязкости в зависимости от времени и температуры старения). Другие важные свойства асфальта, такие как коэффициент температурной восприимчивости и характеризующий фактор, зависели от количества асфальтенов и полярных ароматических углеводородов.Процедура отделения асфальта основана на растворимости в нормальном гептане с последующей адсорбционной хроматографией растворимой части (Speight, 1992a; Mohammed and Morshed, 2008; Speight, 2014).

Термин «старение» используется для описания явления упрочнения. Упрочнение в первую очередь связано с потерей летучих компонентов при старении асфальта во время эксплуатации. Этот фактор вызывает увеличение вязкости асфальта и повышение устойчивости. Кроме того, долговечность асфальта является основным фактором, влияющим на экономику асфальта при его усадке.Системы асфальтовых дорог представляют собой наиболее очевидную и, возможно, самую важную область, в которой наблюдаются характеристики асфальта. Затвердевание, которое происходит в асфальте в условиях эксплуатации, долгое время считалось лучшим показателем его экономической ценности.

Состав асфальта в значительной степени зависит от сырой нефти, из которой он был получен, и обычно основан на качественном определении четырех общих фракций, обнаруженных во всех асфальтах (Speight, 1992a, 2014). Каждая фракция значительно отличается по цвету, плотности и содержанию ароматического углерода.Таким образом, асфальт, отвечающий заданным характеристикам, представляет собой смесь этих количеств.

Асфальтеновые составляющие выделяются в виде фракции, нерастворимой в низкомолекулярных парафиновых растворителях, таких как n -пентан или n -гептан, но растворимы в ароматических растворителях - мальтены определяются как компоненты, растворимые в парафиновых растворителях (Рисунок 6.2) (ASTM D893, ASTM D2007, ASTM D3279, ASTM D4124; Speight, 1992a, b, 1994, 2014, 2015a). Карбены нерастворимы в ароматических растворителях, но растворимы в четыреххлористом углероде или трихлорэтилене.Карбоиды не растворимы во всех растворителях, растворяющих асфальтены и карбены.

С точки зрения окисления и начала нестабильности, более полярные частицы в асфальте (т.е. компоненты смолы и асфальтена) будут окисляться первыми во время продувки воздухом. После предельного включения кислорода в структуре асфальтенов могут происходить значительные изменения, особенно в отношении включения полярного кислорода, который может влиять на молекулярную массу. Таким образом, изменение характера асфальта может быть не столько из-за окислительной деструкции, сколько из-за включения кислородных функций, которые нарушают естественный порядок внутримолекулярного структурирования.Существует вероятность того, что включение кислородных функций увеличивает способность асфальта связываться с заполнителем. Неконтролируемое введение кислородных функций может привести к производству низкосортного асфальта, в котором фазовое разделение окисленного асфальтена, возможно, уже произошло, или, если оно произойдет в продукте, результатом может быть разрушение дорожного покрытия из-за ослабления прочности. асфальт-агрегатные взаимодействия.

Хотя это не определено как свойство стабильности асфальта (поскольку оно измеряет снижение пенетрации, пластичности и увеличения вязкости), когда тонкий слой подвергается воздействию тепла и воздуха, образуется тонкая пленка, которая будет способствовать образованию кислородсодержащих продуктов полимеризации. .Это, в свою очередь, уменьшит проникновение асфальта (повысит его твердость), снизит его пластичность (сделает его более хрупким или менее эластичным) и увеличит его вязкость. Воздействие тепла и кислорода на устойчивый асфальт будет гораздо меньше. Существует прямая связь между результатами этого теста и изменениями исходных свойств асфальта во время транспортировки, хранения и использования.

Поскольку асфальт с некоторым обоснованием считается коллоидной системой, природа этой системы будет определять реологические свойства асфальта, определяемые его пенетрацией, температурой размягчения, пластичностью и вязкостью при заданных температурах.На этом этапе стоит рассмотреть подход, применяемый к нестабильности / несовместимости тяжелых остаточных видов топлива и его потенциальное применение к асфальту (Speight, 1992a, b, 2014). Эта концепция основывает нестабильность / несовместимость на химическом составе, а также на внутренней коллоидной структуре (Por, 1992) путем определения индекса коллоидной нестабильности, который представляет собой отношение суммы составляющих асфальтенов и насыщенных масел к сумме смол. и ароматические растворители:

CII = (Асфальтены + Насыщенные) / (Ароматические соединения + Смолы)

Равновесие хорошо пептизированной асфальтеновой системы, такой как асфальт, может быть легко нарушено (i) нагреванием во время эксплуатации в течение нескольких дней. чрезмерно высоких температур и / или трения автомобильных шин; (ii) окисление из-за постоянного контакта с воздухом; (iii) УФ-облучение при длительном воздействии солнечного света; и (iv) добавление парафинового разбавителя.В каждом случае изменяется химический состав и изменяется ароматичность, вызывая нарушение равновесия коллоидной системы (Moschopedis and Speight, 1973, 1975, 1977, 1978; Speight, 1992a, b, 2014).

В результате частицы асфальтена лишаются своих обволакивающих слоев, которые ранее непрерывно сливались с последующими слоями. Система мицелл становится прерывистой, а ядра асфальтенов склонны к агломерации. Такой процесс приводит к нестабильности асфальта, что, возможно, приводит к фазовому разделению асфальтенов от асфальта, что приводит к потере взаимодействия асфальт-вяжущее.Результат - разрушение дорожного покрытия.

Другой оценкой реологических свойств является PI. Логарифм проникновения находится в линейной зависимости от температуры:

logpen = AT + K

В этом уравнении A представляет собой наклон температурной чувствительности по отношению к логарифму проникновения. Путем экстраполяции на температуру размягчения получается проникновение приблизительно 800. Наклон A может быть получен путем измерения пенетрации при двух различных температурах или по соотношению проплавления и температуры точки размягчения.

PI можно получить следующим образом:

dlogpen / dt = (20 − PI) / (10 + PI) × 0,02A = dlogpen / dtPI = 10 × (2−50A) / (1 + 50A)

A PI, превышающий +2, будет указывать на гелевую структуру с эластичными свойствами и тиксотропную природу, тогда как PI ниже -2 укажет на структуру золя с ньютоновскими свойствами, тогда как асфальт, демонстрирующий удовлетворительные реологические свойства, должен иметь PI от +1 до - 1. После начальной деформации с определенной упругостью должны преобладать ньютоновские свойства с пропорциональностью между скоростью деформации и приложенным напряжением.Кривые над этими областями указывают на гелеобразный асфальт, а кривые под этими участками обозначают асфальт с зольной структурой.

Присутствие асфальта, осажденного пропаном, в асфальтовой смеси улучшает свойства устойчивости таких смесей из-за как реологической, так и химической природы асфальта, осажденного пропаном. Улучшенные свойства стабильности таких смесей можно увидеть по уменьшению различий в вязкости, проникновении и пластичности после воздействия повышенных температур и кислорода (например,г., в ТФОТ).

Благоприятное влияние асфальта, осажденного пропаном, ограничено их пропорциями - например, до 35% (об. / Об.) Осажденного пропаном асфальта в смесях с вакуумным остатком может быть верхним пределом, в зависимости от природа остатков в вакууме, а также природа и пропорции других компонентов, таких как, например, экстракты смазочного масла, которые иногда используются в таких смесях (Ishai et al., 1988).

Это указывает на то, что долговременная стабильность асфальта связана с основными реологическими и физико-химическими характеристиками исходного, а также выдержанного образца асфальта различного состава.Также считается (Ishai et al., 1988), что понимание взаимосвязи этих характеристик со свойствами асфальта (асфальтобетонного покрытия) позволяет прогнозировать характеристики долговечности асфальта в полевых условиях, а также прогнозировать другие соответствующие свойства (Mohammed and Eweed, 2012). В этом случае на стабильность указывают индексы старения: отношения вязкости и температуры размягчения, а также процент остаточного проникновения до и после воздействия TFOT (Por, 1992).

Наконец, последствия загрязнения остатка во время перегонки частицами или остатка висбрекинга (также называемого висбрекинг смолы ) (Speight, 2014, 2015b) могут иметь серьезные последствия для эксплуатационных характеристик асфальта. Если для производства асфальта используется загрязненный твердыми частицами остаток или смола висбрекинга, в результате получается асфальт плохого качества (более подходящий в качестве асфальта для стоянок), цена которого будет намного ниже, чем цена проезжей части хорошего качества (без частиц). асфальт.

Об асфальте | Трой, штат Нью-Йорк, подрядчик по укладке дорожных покрытий

ПОДБАЗА:

Первым и наиболее важным фактором, который следует учитывать перед укладкой асфальта, является фундамент, на котором он будет построен. Новый асфальт следует укладывать на фундамент из правильно утрамбованного щебня. Мы используем щебень, утвержденный Государственным утверждением №4, с пылью, который мы смачиваем при уплотнении, чтобы обеспечить прочное прочное основание.

Условия глиняного грунта могут потребовать установки геотекстильной ткани.Эта ткань размещается перед установкой основания и обеспечивает барьер, предотвращающий смешивание глины с камнем, что дестабилизирует основание.

ДВИЖЕНИЕ В ОДНОМ КУРСЕ:

Лучше всего подходит для мощения жилых домов, где тяжелые автомобили не будут ставиться на тротуар. Установка состоит из одинарного слоя асфальта ок. 3 дюйма толщиной до уплотнения. Асфальт типа 7 содержит мелкий камень и пыль, имеющую очень гладкую поверхность. Асфальт 6-го типа содержит камни немного большего размера, поэтому он обеспечивает большую прочность, но не такой гладкий, как асфальт 7-го типа.После нанесения герметика сложно различить текстуры.

ДВУСТОРОННЯЯ ПРОКЛАДКА:

Лучше всего подходит для мощения коммерческих и / или жилых помещений, где ожидается интенсивное движение или тяжелые транспортные средства. Он состоит из двух слоев дорожного покрытия (связующего слоя и верхнего слоя) с уплотнением, выполняемым после укладки каждого слоя. Сначала устанавливается связующее поле с крупными камнями, это обеспечивает прочность. Во-вторых, для гладкой отделки устанавливается верхнее поле с камнем меньшего размера.

ПЕРЕПОЛНИТЕЛЬНАЯ ПОВЕРХНОСТЬ или НАКЛАДКА:

Мощение поверх уже существующего покрытия часто требует распиловки и удаления существующего покрытия в гаражах, тротуарах, улицах и т. Д., Чтобы обеспечить примыкание к новому покрытию. Существующее покрытие затем выравнивается и выравнивается, чтобы удалить любые низкие участки. После того, как был подготовлен слой дорожного покрытия ок. 1½ ”-2”, если он установлен и уплотнен.

Важно отметить, что новое покрытие будет соответствовать поверхности, на которой оно установлено.Например, если на старой подъездной дорожке есть трещины, со временем они вылезут на поверхность. Это называется отражающим растрескиванием.

О распиловке и фрезеровании:

Эти процедуры гарантируют, что ваше покрытие будет на одном уровне с дорогой, тротуарами и другими конструкциями. Если тротуар неровный, это может стать причиной спотыкания. На дороге, если тротуар неровный, его можно повредить, если плуг зацепится за кромку.

»Глоссарий

Как и во многих других отраслях, в асфальтовой промышленности используется жаргон.Хотя термины могут быть взаимозаменяемыми для тех, кто работает в асфальтовой промышленности, это может сбивать с толку тех, кто не знаком с терминологией. Чтобы помочь посетителям нашего веб-сайта, мы создали глоссарий по асфальту, который содержит общие слова, фразы и сокращения.

AASHTO- (Американская ассоциация государственных служащих автомобильных дорог и транспорта) - организация дорожных инженеров из транспортных агентств штата, которая разрабатывает руководства и стандарты для использования транспортными агентствами.

AC- Акроним от Asphalt Concrete, но ранее (до 2000 г.) использовался для Asphalt Cement

Aggregate- Любой твердый, инертный минеральный материал, используемый для смешивания градуированных фрагментов. В его состав входит песок, гравий, щебень или шлак.

Асфальт - Вяжущий материал от темно-коричневого до черного, твердый, полутвердый или жидкий по консистенции; в котором преобладающими компонентами являются битумы, встречающиеся в природе как таковые или получаемые в виде остатков при переработке нефти.Асфальт в различных пропорциях входит в состав большинства сырой нефти.

Асфальт Базовый курс - Фундаментный слой, состоящий из минерального заполнителя, связанного вместе с асфальтовым материалом. Укладка, как правило, состоит из более крупного заполнителя с максимальным размером от ¾ ”(19 мм) до 1,5” (37,5 мм)

Asphalt Binder- Асфальт, очищенный в соответствии со спецификациями для дорожных покрытий, промышленных и специальных целей.

Asphalt Binder Course- Промежуточный курс между базовым слоем и слоем асфальтового покрытия.Связующий слой обычно представляет собой крупнозернистый асфальтобетон, содержащий небольшое количество минеральных веществ, проходящих через сито № 200, или не содержащий их совсем.

Асфальтоблоки - Асфальтобетон, формованный под высоким давлением. Тип состава смеси заполнителей, количество и тип асфальта, а также размер и толщина блоков могут варьироваться в зависимости от требований использования.

Асфальт Блочные покрытия - Покрытия, в которых поверхностный слой построен из асфальтовых блоков.Эти блоки укладываются регулярными рядами, как и в случае кирпичных тротуаров.

Асфальтовый цемент- См. Асфальтовое связующее .

Асфальтобетон - Высококачественная, тщательно контролируемая смесь асфальтобетон / вяжущее и хорошо отсортированный, высококачественный заполнитель, а также дополнительные переработанные материалы и добавки, тщательно уплотненные до однородной плотной массы. Этот термин часто обозначают аббревиатурой AC и в разговорной речи могут называться «асфальт».

Промежуточный курс по асфальту ( , иногда , называемый Binder Course) - Маршрут между базовым и асфальтовым покрытием.

Асфальт Шовный наполнитель - Асфальтовый продукт, используемый для заполнения трещин и швов в дорожном покрытии и других конструкциях. При наложении твердого покрытия толщина покрытия должна быть не менее 4 дюймов, чтобы минимизировать отражение трещин и стыков через покрытие. Может потребоваться большая толщина покрытия в зависимости от состояния старого покрытия и обслуживаемого трафика.

Асфальт Тротуары- Тротуары, состоящие из слоя минерального заполнителя, покрытого и зацементированного вместе с асфальтовым цементом на поддерживающих слоях, таких как асфальтовая основа; щебень, шлак или гравий; или на портландцементном бетоне, кирпиче или блочном покрытии.

Асфальт Стабилизация грунта - (обработка почвы) Обработка природных непластичных или умеренно пластичных грунтов жидким асфальтом при нормальных температурах. После смешивания, аэрации и уплотнения создаются водостойкие слои основания и основания с улучшенными несущими характеристиками.

Асфальтовое покрытие Обработка - Нанесение асфальтовых материалов на любой тип дороги или покрытия тротуара, с покрытием из минерального заполнителя или без него, которое дает увеличение толщины менее чем на один дюйм.

ASTM- (Американское общество испытаний и материалов) - национальная организация пользователей и производителей материалов, устанавливающая стандарты.

Базовый слой - Слой материала непосредственно под поверхностью или промежуточный слой. Он может состоять из щебня, дробленого шлака, дробленого или неразрушенного гравия и песка или комбинации этих материалов. Также можно связать асфальтом (асфальтовое основание).

Связующий слой - Переходный слой битумного покрытия между основанием из щебня и поверхностным слоем.

Заимствование- Подходящий материал из источников за пределами призмы проезжей части, используемый в основном для насыпей.

Битумный Бетон- Разработанная комбинация отсортированного щебня, наполнителя и битумного цемента, смешанных на центральной установке, укладываемых и уплотняемых в горячем состоянии.

CBR (Калифорния Коэффициент подшипника ) - Измерение прочности и опорной способности щебеночного основания или грунта земляного полотна.

Капилляр Action- Подъем или движение воды в пустотах почвы из-за капиллярных сил.

Цементно-обработанное основание - Цементно-обработанное основание состоит из определенных заполнителей грунта и портландцементного бетона, смешанных в мельнице и нанесенных на земляное полотно до указанной толщины.

Крупный Агрегат - Частицы заполнителя, задержанные на сите № 8.

Крупный Graded Aggregate- Один, имеющий непрерывную сортировку по размеру частиц от крупных до мелких с преобладанием крупных размеров.

Уплотнение - Уплотнение щебеночного основания, твердого земляного полотна или битумного материала путем вибрации или прокатки.

Контракт- Письменное соглашение, заключенное между подрядчиком и другими сторонами, излагающее обязательства сторон по нему, включая, помимо прочего, выполнение работ, предоставление рабочей силы и материалов, а также основу оплаты. .

Подрядчик - Физическое лицо, товарищество, корпорация или совместное предприятие, заключающее договор на выполнение предписанных работ.

Щебень - Продукт, полученный в результате искусственного измельчения горных пород, валунов или крупных булыжников с частицами, полученными в результате операции дробления, у которой все грани разрушены.

Crusher Run- Заполнители, которые после первоначальных операций дробления получили мало или совсем не отсеивались. Агрегаты дробилки обычно более экономичны, чем просеянные агрегаты.

Cul-De-Sac- Область на конечной остановке тупиковой улицы или дороги, построенная с целью позволить транспортному средству развернуться.

Culvert- Любое сооружение, не классифицируемое как мост, которое обеспечивает проем под любой проезжей частью.

Cut- Часть проезжей части, образованная выемкой грунта под землей.

Cutback Asphalt- Асфальтовый цемент, который был переведен в жидкое состояние путем смешивания с нефтяными растворителями. Под воздействием атмосферных условий растворители испаряются, оставляя асфальтовому цементу выполнять свою функцию.

Асфальтовое покрытие с глубоким подъемом - Покрытие, в котором слой асфальтового основания укладывается одним или несколькими подъемами толщиной 4 или более дюймов в уплотненном состоянии.

Проект CBR- Две трети среднего значения всех испытаний CBR, проведенных на земляном полотне при строительстве асфальтового покрытия. В данном руководстве для определения толщины покрытия используются расчетные значения CBR, а не средние значения CBR, чтобы компенсировать значения CBR ниже среднего.

Расчетная толщина - Общая толщина конструкции дорожного покрытия над земляным полотном.

Плотный заполнитель - Минеральный заполнитель, равномерно распределенный от максимального размера до минеральной пыли включительно, достаточной для уменьшения пустот в уплотненном заполнителе до чрезвычайно малых размеров, приближающихся к размеру пустот в самой пыли.

Дренаж - Сооружения и сооружения для сбора и отвода воды.

Земляные работы - Работа, состоящая из строительства проезжей части, за исключением следующих: мосты, конструкция дорожного покрытия и выбранный или защитный материал.

Набережная - Строение из грунта, грунта-заполнителя или щебня между основанием насыпи и земляным полотном.

Эмульгированный асфальт- Эмульсия асфальтового цемента и воды, которая содержит небольшое количество эмульгатора, гетерогенная система, содержащая две обычно несмешивающиеся фазы (асфальт и вода), в которой вода образует непрерывную фазу эмульсии, и мельчайшие шарики асфальта из прерывистой фазы.Эмульгированные асфальты могут быть либо анионными, отрицательно заряженными глобулами асфальта, либо катионными, положительно заряженными глобулами асфальта, в зависимости от эмульгатора.

Оборудование- Все машины, инструменты и другое оборудование вместе с необходимыми принадлежностями для содержания и обслуживания, необходимые для надлежащего строительства и приемлемого завершения работ.

Эрозия - Удаление и перенос почвы под действием воды или ветра.

Мелкий Агрегат - Частицы агрегата, проходящие через сито № 8.

Мелкозернистый заполнитель - Агрегат с непрерывной сортировкой по размеру частиц от крупного до мелкого с преобладанием мелких размеров.

Гибкое Покрытие- Конструкция дорожного покрытия, которая поддерживает тесный контакт с грунтовым полотном и распределяет нагрузки на него, и зависит от блокировки заполнителя, трения частиц и сцепления для обеспечения устойчивости.Асфальтовые или битумно-бетонные покрытия - это гибкие покрытия. Бетона нет.

Fog Seal- Легкое нанесение жидкого асфальта без покрытия из минерального заполнителя. Медленно схватывающаяся асфальтовая эмульсия, разбавленная водой, является предпочтительным типом.

Свободная вода (Земля Вода) - Вода, которая может свободно перемещаться через массив почвы под действием силы тяжести.

Французский водосток - Траншея, свободно засыпанная камнями, причем самый крупный из них размещается внизу, а его размер уменьшается кверху.

Асфальтовое покрытие на всю глубину - Асфальтовое покрытие, в котором асфальтовые смеси используются для всех слоев над земляным полотном или улучшенного земляного полотна. Асфальтовое покрытие на всю глубину укладывается непосредственно на подготовленное земляное полотно.

Гравий- Крупнозернистый гранулированный материал (обычно более 1 / • дюйма в диаметре), возникающий в результате естественной эрозии и разрушения породы. Дробленый гравий является результатом искусственного дробления, при этом у большинства фрагментов есть по крайней мере одна грань, образовавшаяся в результате разрушения.

Зеленый асфальт - см. Теплый асфальт

HMA ( горячий асфальт) - Асфальтобетонные смеси, получаемые при температурах обычно от 270 до 350 градусов по Фаренгейту.

Гидростатическое Давление- Давление в жидкости в статических условиях; произведение удельного веса жидкости на разницу высот между заданными точками и высоту свободной воды.

Улучшенное земляное полотно Земляное полотно - Любой ряд или ряды выбранных или улучшенных материалов между грунтом основания и основанием обычно называют улучшенным земляным полотном.Улучшенное земляное полотно может состоять из двух или более слоев материалов разного качества.

Выравнивание Course- Смесь асфальта и заполнителя переменной толщины, используемая для устранения неровностей контура существующей поверхности перед наложенной обработкой или строительством.

Жидкий асфальт - Асфальтовый материал, имеющий мягкую или текучую консистенцию, которая выходит за пределы диапазона измерения при обычном испытании на проникновение, предел которого составляет максимум 300.Жидкие асфальты включают измельченный асфальт и эмульгированный асфальт.

Материалы - Любые вещества, указанные для использования при строительстве объекта и его принадлежностей.

Асфальт средней твердости (MC) - Жидкий асфальт, состоящий из битумного цемента и разбавителя керосинового типа со средней летучестью.

Минеральная пыль- Часть мелкого заполнителя, проходящая через сито № 200.

Минерал Наполнитель- Мелкодисперсный минеральный продукт, не менее 65% которого соответствует требованиям No.200 сито. Измельченный известняк является наиболее распространенным производимым наполнителем, хотя также используются другие виды каменной пыли, гашеная известь, портландцемент и некоторые природные месторождения мелкодисперсных минеральных веществ.

Природный Асфальт - Встречающийся в природе асфальт, полученный из нефти в результате естественных процессов испарения летучих фракций, покидающих фракции асфальта. Наиболее важные природные асфальты находятся в отложениях озера Тринидад и Бермудес.Асфальт из этих источников называется асфальтом озера.

Заполнитель открытого типа - Заполнитель с небольшим содержанием минерального наполнителя или без него или в котором пустоты в уплотненном заполнителе относительно велики.

Конструкция дорожного покрытия (комбинация или композит) - AII ряды выбранного материала, уложенные на фундамент или грунт земляного полотна, кроме любых слоев или рядов, построенных в процессе профилирования. Когда асфальтовое покрытие находится на старом бетонном основании из портландцемента или других основаниях жесткого типа, конструкция покрытия упоминается как конструкция покрытия комбинированного или композитного типа.

Перколяция - Движение свободной воды в почве.

Проницаемость - Мера скорости или объема потока воды через почву.

Нефть Асфальт- Асфальт очищенный из сырой нефти.

Планы- Стандартные чертежи, действующие на дату получения заявок, а также официальные утвержденные планы, профили, типовые поперечные сечения, списки электронных компьютерных продуктов, рабочие чертежи и дополнительные чертежи или их точные копии, действующие на дату подачи заявок получены, и все последующие утвержденные изменения к ним, которые показывают расположение, характер, размеры и детали работы, которая должна быть сделана.

Портландцементный бетон - Композитный материал, состоящий в основном из портландцемента и воды в качестве связующей среды, внутри которой смешаны крупные и мелкие частицы щебня.

Prime Coat- Нанесение жидкого асфальта с низкой вязкостью на впитывающую поверхность. Применяется для подготовки необработанного основания под асфальтовое покрытие. Грунтовка проникает в основание и закрывает пустоты, укрепляет верхнюю часть и помогает связать ее с вышележащим слоем асфальта.Это также снижает необходимость поддерживать необработанный слой основания перед укладкой асфальтового покрытия.

Предложение - Предложение участника торгов, представленное на утвержденной официальной форме, на выполнение работ и предоставление рабочей силы и материалов по указанным в нем ценам, действительно только при наличии надлежащей подписи и гарантии.

Асфальт быстрого отверждения (RC) - Жидкий асфальт, состоящий из битумного цемента и нафты или бензинового разбавителя с высокой летучестью.

Восстановление - Обновление существующей поверхности путем измельчения и повторного смешивания с дополнительным материалом или без него и ретуширования

Восстановление поверхности - (Иногда называется наложением) Существующие поверхности могут быть улучшены путем шлифовки (или наложения) асфальтовой смеси растительного происхождения. коврик разной толщины.Его можно разделить на две категории. (1) Накладки для создания гладких, противоскользящих и водостойких поверхностей или для улучшения уклона и / или поперечного сечения. (2) Накладки для усиления существующих покрытий, чтобы выдерживать более тяжелые нагрузки или повышенное движение.

Жесткое покрытие - Конструкция дорожного покрытия, которая распределяет нагрузки на земляное полотно, имея в качестве одного слоя бетонную плиту из портландцемента с относительно высоким сопротивлением изгибу.

Дорога- Общий термин, обозначающий общественный путь для транспортных средств, включая всю территорию в пределах полосы отчуждения.

Дорожное полотно- Градиентный участок шоссе в пределах верхнего и бокового откосов, подготовленный в качестве основания для конструкции дорожного покрытия и обочин.

Камень - , из которого делают щебень, песок и гравий, и камень, наиболее подходящий для изготовления хороших заполнителей.

Песок-асфальт- Смесь песка и асфальтобетона или жидкого асфальта, приготовленная с или без специального контроля гранулометрического состава заполнителя с минеральным наполнителем или без него. Могут использоваться смешанные конструкции заводских смесей или .Асфальтобетонный песок можно использовать при устройстве как основания, так и земляного полотна.

Seal Coat- Тонкое покрытие из асфальта, используемое для водонепроницаемости и улучшения текстуры асфальтового покрытия. В зависимости от цели герметизирующие покрытия могут быть покрыты или не покрыты заполнителем. Основными типами герметизирующих покрытий являются заполнители, герметики для тумана, герметики для эмульсионных суспензий и песочные уплотнения.

Выбор материала - Подходящий материал, полученный из выемок проезжей части, участков или коммерческих источников и предназначенный или зарезервированный для использования в качестве основания для основания, для материала основания, покрытия уступов или других конкретных целей.

Листовой асфальт - Горячая смесь асфальтобетона с чистым гранулированным песком и минеральным наполнителем. Его использование обычно ограничивается поверхностным слоем, обычно проложенным на промежуточном или выравнивающем слое.

Обочина - Часть проезжей части, примыкающая к проезжей части, для размещения остановившихся транспортных средств, аварийного использования и боковой поддержки базовых и наземных курсов.

Асфальт медленного отверждения (SC) - Жидкий асфальт, состоящий из асфальтобетона и масел с низкой летучестью.

Шлак- Охлаждаемый воздухом неметаллический побочный продукт доменной печи, состоящий в основном из силикатов и алюмосиликатов извести и других оснований, который образуется одновременно с железом в доменной печи. Естественно, он доступен только в тех населенных пунктах, где производится чугун. Измельченный шлак весит около 80 фунтов. на кубический фут.

Slurry Seal- Смесь медленно схватывающегося эмульгированного асфальта, мелкого заполнителя и минерального наполнителя с водой, добавленной для получения консистенции суспензии.

Заполнитель почвы - Природные или приготовленные смеси, состоящие преимущественно из твердых и прочных частиц или фрагментов камня, шлака, гравия или песка и содержащие некоторое количество глинисто-грунтовой или каменной пыли, соответствующие требованиям технических условий.

Основа грунтового цемента - Состоит из смеси натурального материала земляного полотна и портландцемента в надлежащих количествах. После тщательного перемешивания добавляется необходимое количество воды и материал уплотняется до необходимой толщины.

Опора грунта - Термин, выражающий способность материала дорожного полотна или грунта земляного полотна выдерживать транспортные нагрузки, передаваемые через гибкую конструкцию дорожного покрытия.

Специальное положение 5- Особые указания, положения или требования, относящиеся к рассматриваемому проекту и не детализированные иным образом полностью или удовлетворительно или не изложенные в спецификациях. Они изложили окончательное договорное намерение по рассматриваемому вопросу.

Этап строительства - Строительство дорог и улиц путем нанесения последовательных слоев асфальтобетона в соответствии с проектом и заранее установленным графиком.

Street- Общий термин, обозначающий общественный путь для транспортных средств, включая всю территорию в пределах полосы отчуждения.

Подоснование- Участок в конструкции асфальтового покрытия непосредственно под основанием является подоснованием. Если грунт земляного полотна надлежащего качества, он может служить основанием.

Субподрядчик - Любое физическое лицо, товарищество или корпорация, которым подрядчик передает часть контракта в субаренду.

Подводный дренаж - Сооружение, расположенное под поверхностью земли для сбора и отвода подземных вод.

Земляное полотно - Земля под дорожным покрытием, которая служит фундаментом для конструкции дорожного покрытия. Следовательно, земляное полотно - это самый верхний материал, размещенный в насыпи или не сдвинутый из разрезов при нормальной планировке дорожного полотна. Грунт земляного полотна иногда называют «грунтом фундамента».

Стабилизация земляного полотна - Модификация грунта дорожного полотна путем добавления стабилизирующих или химических агентов, которые увеличивают несущую способность, прочность и устойчивость к атмосферным воздействиям или смещениям.

Покрытие поверхности - Один или несколько слоев конструкции дорожного покрытия, спроектированных для восприятия транспортной нагрузки, верхний слой которой устойчив к заносу, трению и разрушающему воздействию климата. Верхний слой иногда называют «слоем износа».

Подземный дренаж - Удаление свободной воды из различных структурных элементов дорожного покрытия или окружающей почвы.

Tack Coat- Нанесение разбавленного эмульгированного асфальта для увеличения адгезии между слоями (слоями) дорожного покрытия.

Тонкий Покрытие - Однократный слой песчано-асфальтного или песчано-асфальтового покрытия с содержанием не более 25% камня «14», изготовленный на асфальтобетонном заводе в соответствии с указанными градациями и указанным количеством указанного проникновения асфальт.

Поддренаж - Перфорированная труба или труба с пористыми стенками, помещенная с подходящей проницаемой засыпкой под поверхностью земли для сбора и отвода подземных вод.

Вязкость - Это мера сопротивления потоку.Термин используется как «высокая вязкость» или «низкая вязкость». Материал с высокой вязкостью будет означать тяжелый или жесткий материал, который не будет легко течь. С материалом с низкой вязкостью все будет наоборот. Вязкость измеряется в абсолютных единицах, называемых пуазами. Ранее он измерялся эмпирическими значениями времени, расстояния и температуры. Этот метод получил название вязкости Сейболта-фурола.

WMA (теплая асфальтовая смесь) - Асфальтобетон, произведенный при температурах ниже, чем у обычного асфальта, или при температурах, аналогичных обычному асфальту, но может уплотняться при более низких температурах смеси (т.е.е. менее 250 градусов по Фаренгейту). Обычный асфальт производится при заводских температурах от 280 до 350 градусов по Фаренгейту в зависимости от асфальтовой смеси и времени года. WMA производится путем вспенивания, добавления химической добавки или добавки на основе воска.

Износ Маршрут - Верхний слой асфальтового покрытия, также называемый поверхностным слоем.

Все, что нужно знать об асфальтовом покрытии

Заполнение трещин

Заполнение трещин - это когда горячий герметик используется для заполнения трещин в дорожном покрытии, чтобы вода не наносила больше повреждений.Герметик будет прилипать к асфальту, не позволяя воде и другим природным элементам проникать и использовать слабые места в дорожном покрытии.

Одна из самых больших ошибок, которую делают люди, когда дело касается трещин в асфальте, - это слишком долгое ожидание, чтобы заделать их. Со временем трещины будут только расти. То, что когда-то было небольшой трещиной, может быстро превратиться в растрескивание аллигатора или даже выбоину, что поставит под угрозу целостность всей поверхности дорожного покрытия.

Уплотнительное покрытие

Sealcoating защитит асфальт от топлива, масла, воды, погодных условий и износа от дорожного движения.Это быстрый и простой способ предотвратить повреждение, и его следует применять каждые 3-5 лет, всегда в теплые месяцы. Герметизация не наносится на новое асфальтовое покрытие, а используется для продления срока службы старого покрытия. Благодаря герметизирующему покрытию ваше покрытие выглядит гладким и темным. Это идеальное решение, если вы ищете простой способ улучшить внешний вид вашего асфальта и защитить его от непогоды.

Преимущества герметизирующего покрытия

  • Продлевает жизнь дорожной одежды
  • Ускоряет таяние снега и льда
  • Снижает затраты на долгосрочный ремонт
  • Защищает дорожное покрытие от окисления, разливов масла, химических веществ и проникновения воды
  • Улучшает внешний вид свойства

Фрезерный

Фрезерование - это процесс удаления верхнего слоя асфальта без нарушения нижнего основания.Это отличный вариант, если ваше основание полностью исправно и ремонт требует только верхний слой асфальта. Фрезерование может быть выполнено за небольшую часть стоимости полной реконструкции, поскольку удаляется и заменяется только верхний слой. Весь процесс может быть завершен за относительно короткий период времени.

Преимущества фрезерования

  • Рентабельность
  • Быстрое завершение проекта
  • Переработка старого материала

Патч

Ямочный ремонт - это процесс заделки выбоин.Существуют небольшие вариации в методах установки исправлений, но общая идея состоит в следующих пяти шагах:

Этап 1: Удаление поврежденного покрытия

В зависимости от размера и характера повреждений будут использоваться разные инструменты.

Шаг 2: Очистка выбоины

Необходимо удалить весь мусор, иногда могут даже проткнуть растения, которые необходимо удалить с корнем.

Шаг 3: Ремонт фундамента

Asphalt необходимо прочное основание, иначе в будущем у вас будет больше проблем.

Шаг 4: Заполнение выбоины

Тип асфальта, используемого для заполнения выбоин, будет зависеть от погоды и размера выбоины, обычно будет использоваться горячая или холодная асфальтовая смесь.

Шаг 5: Подбивка

Яма будет немного переполнена, и ее необходимо утрамбовать. В зависимости от размера выбоины для этого можно использовать различное оборудование или инструменты.

Накладка

Покрытие асфальта можно рассматривать как большой ямочный ремонт участка асфальта.Наложение обычно используется, когда на существующем асфальте видны некоторые признаки трещин и выбоин, но повреждений недостаточно, чтобы потребовать полной замены.

Ищете примеры проекта асфальтового покрытия?

Пример использования муниципального асфальта: Мейер-роуд, Мэдисон

Пример использования асфальтового покрытия в жилых домах: подъездная дорога г-на Галлуна

Новая установка

Новая асфальтовая укладка - это новый старт для вашего покрытия.Обычно это происходит так:

Шаг 1: Снос и демонтаж

Все начинается с удаления существующей поверхности и ее утилизации. Если существующее покрытие представляет собой асфальт, его можно переработать и использовать в будущих асфальтовых покрытиях, что сэкономит вам деньги на материале.

Шаг 2: Планирование и уклон

Перед тем, как что-либо укладывать, поверхность необходимо выровнять, это позволит воде стекать с тротуара в травянистую зону. Вашим подрядчикам также может потребоваться изменить форму участка, чтобы придать ему наклонную поверхность, которая поможет отвести воду.

Шаг 3: Подготовка вспомогательной базы

Основание - это самый нижний слой, он будет поддерживать ваше новое покрытие.

Шаг 4. Добавление связующего слоя

Связующий слой представляет собой крупный заполнитель, смешанный с маслом, что делает его прочным и долговечным. Как только этот шаг будет выполнен, пришло время сделать контрольную проверку.

Пробный валик - это испытание, чтобы убедиться, что нижележащая поверхность достаточно прочна, чтобы выдержать новый асфальт. Если пробный валик находит мягкие участки, для их ремонта можно использовать подрезку.Процесс включает в себя копание под землей до поверхности примерно на 2 или 3 фута и замену мягкой почвы более прочным заполнителем.

Шаг 5: Установка нового асфальтового покрытия

Новый асфальт.

Шаг 6: Последний бросок

После того, как асфальт будет уложен, поверхность будет выровнена и уплотнена.

Современное исследование старения асфальтовых смесей и использования антиоксидантных добавок

Пагубные последствия твердения асфальтовых покрытий были впервые признаны первопроходцами в области дорожного строительства в 1900-х годах и широко изучались в течение последних 70 лет.Этот процесс твердения, называемый старением асфальта, обычно определяется как изменение реологических свойств битумных вяжущих / смесей из-за изменений химического состава во время строительства и в течение срока службы. Старение приводит к тому, что асфальтовый материал становится жестким и хрупким, что влияет на его долговечность и приводит к высокому потенциалу растрескивания. В данной статье представлены современные достижения в области старения асфальта и асфальтобетонных смесей и использования антиоксидантных добавок для замедления старения. Также обсуждаются картина сложной молекулярной структуры асфальта и ее изменений из-за атмосферных условий и различные протоколы, используемые для моделирования старения в лабораторных условиях.Особое внимание уделяется недавним исследованиям моделирования старения асфальтовых смесей, поскольку исследования смесей по сравнению с асфальтовым вяжущим были ограничены. Наконец, в этой статье представлено применение методов защиты от старения и его механизм, использование различных типов антиоксидантных добавок для замедления старения асфальта и, следовательно, улучшения характеристик асфальтовых покрытий.

1. Введение

Асфальт является наиболее широко используемым вяжущим материалом для дорожных покрытий во всем мире.Приблизительно 95% асфальта, который производится во всем мире каждый год, используется в дорожной промышленности [1]. Асфальт по существу действует как связующее для минеральных заполнителей, образующих асфальтобетонные смеси, также называемые асфальтобетонными или битумными смесями. Первое использование асфальта в дорожном строительстве в эпоху Набопаласара, царя Вавилона (625–604 гг. До н.э.), было упомянуто Авраамом [2]. Однако битум практически исчез с тротуаров до тех пор, пока не были обнаружены европейские источники природного битума, что привело к развитию современных применений этого материала [1].Дороги с асфальтовым покрытием эксплуатируются в Европе с 1850-х годов [3] и в США около 125 лет [4]. Инженеры-новаторы в области дорожного покрытия [2, 5] наблюдали сильное влияние температуры на его консистенцию и вскоре поняли, что твердение или старение асфальта происходит во время смешивания, строительства и эксплуатации, что влияет на характеристики асфальтового покрытия [6].

Термин «старение» может применяться для описания нескольких механизмов в битумном вяжущем / смеси. Следовательно, представляется необходимым уточнить терминологию, используемую инженерами по дорожным покрытиям.В дорожном строительстве изменение реологических свойств асфальтобетонных вяжущих / смесей связано с изменениями химического состава в процессе строительства и в течение срока его службы.

Старение асфальтобетонных вяжущих происходит во время производства асфальтобетонных смесей и в процессе эксплуатации под воздействием окружающей среды. Первая стадия старения происходит очень быстро, когда асфальтобетонная смесь производится при очень высокой температуре. Этот этап часто называют кратковременным старением. На этом этапе очень тонкая пленка асфальта подвергается воздействию воздуха при повышенных температурах, что приводит к значительному изменению реологических свойств битумных вяжущих.Такие изменения проявляются в повышенной вязкости и повышенной жесткости [7]. Вторая стадия старения происходит, когда асфальт подвергается воздействию окружающей среды в качестве дорожного покрытия в процессе эксплуатации при относительно более низкой температуре в течение длительного времени. Скорость затвердевания зависит от содержания воздушных пустот и окружающей среды.

На Рисунке 1 показан типичный отклик отверждения для немодифицированного битумного вяжущего. Наблюдается скачок вязкости битумного вяжущего из-за кратковременного старения (Фаза 1), в то время как наблюдается линейное увеличение с более низкой постоянной скоростью со временем (Фаза 2).Фаза 2 представляет собой упрочнение из-за длительного старения.


Есть несколько факторов, которые влияют на старение асфальта. К внешним факторам относятся тип установки, температура смешивания и время хранения в бункере при кратковременном старении, а также полевые условия (например, температура, ультрафиолетовые (УФ) лучи и осадки) и время в течение длительного выдерживания. Скорость и степень старения также зависят от свойств смеси, таких как источник и тип асфальта, градация и абсорбция заполнителя, содержание пустот / проницаемость и толщина пленки асфальтового связующего на заполнителе.В таблице 1 приведены различные факторы и их влияние на кратковременное и долгосрочное старение асфальта. Недавнее исследование Morian et al. [9] сообщили, что эффективное содержание связующего в смесях является самым надежным индикатором характеристик старения асфальтовой смеси, независимо от типа гранулированного заполнителя.

91mp329 Значительный эффект ] Haroehl и Pred329. [26], Хьюстон и др.[27] 935 935 9133 935 9153 935 9133 935 935 915 изменения свойств асфальтовой смеси, которые отражаются на характеристиках асфальтового покрытия.Результаты экспериментальных исследований [33] показали, что пластичность и проницаемость асфальтового вяжущего снижаются, в то время как температура размягчения и температура воспламенения повышаются в результате старения. В конечном итоге вязкость асфальта увеличивается и он становится более жесткой асфальтовой смесью. Увеличение вязкости до 10 раз из-за 5-летнего старения месторождения в условиях Ближнего Востока наблюдалось, как показано на Рисунке 2 [34].


Что касается механических свойств, модуль жесткости также увеличивается из-за старения (Рисунок 3), и это увеличение может быть до 4 раз в зависимости от типа асфальта [35].Это может привести к тому, что смесь станет чрезмерно твердой и хрупкой, а также подверженной разрушению и усталостному растрескиванию при низких температурах [36–38]. Старение также может сделать смесь менее прочной, чем исходная смесь, с точки зрения износостойкости и восприимчивости к влаге [39]. В результате снижается устойчивость асфальтового слоя к повреждению, и многие эксплуатируемые покрытия автомобильных дорог и аэродромов выходят из строя преждевременно. Однако старение не обязательно является отрицательным явлением, поскольку сопротивление асфальтовой смеси остаточной деформации и несущая способность улучшаются за счет повышенной жесткости и когезии.В некоторых случаях старение также может помочь смеси достичь оптимальных свойств [6].


В этой статье представлен всесторонний обзор старения асфальтобетонных покрытий со следующими ключевыми направлениями: (1) Всестороннее определение старения асфальта и обзор химического состава асфальта (2) Критическое обсуждение механизмов старения, соответствующих изменений в молекулярной структуре структура, и ее влияние на свойства асфальтовых материалов (3) Существующие методы испытаний, протоколы и методы оценки старения асфальтобетонных покрытий с акцентом на недавние исследования старения асфальтовых смесей (4) Методы защиты от старения и различные типы добавки и их механизм для замедления старения асфальта с целью улучшения характеристик асфальтового покрытия.

2. Химия асфальта и механизмы старения

Асфальт получают либо из природных отложений, либо как остаток сырой нефти или продукт экстракции нефти растворителем. Он имеет переменный и сложный элементный состав, который в первую очередь зависит от его исходного сырья. Асфальт в основном состоит из углерода (обычно 80–88%) и атомов водорода (10–12%), что дает содержание углеводородов около 90% [41, 42]. Остальная часть состоит из двух типов атомов: гетероатомов и металлов.Гетероатомы включают азот (0–2%), кислород (0–2%) и серу (0–9%). Атомы металлов представляют собой ванадий, никель и железо, и эти атомы присутствуют в следовых количествах, обычно намного меньше 1% [43, 44]. В таблице 2 показан элементный анализ 8 различных керновых битумов различного происхождения.


Факторы Результаты Ссылки

Тип и источник связующего Значительное влияние на старение в полевых условиях Лунд и Уилсон [11, 12]
Тип и источник связующего Значительное влияние на старение в лаборатории; снижение старения с помощью полимера Topal and Sengoz [13], Zhao et al.[14], Morian et al. [15]
Толщина асфальтовой вяжущей пленки Значительный эффект Кандал и Чакраборти [16]
Совокупная градация Нет эффекта Чипперфилд и Велч [17] 932834 Важное влияние 932834 и другие. [15]
Совокупное поглощение Главный эффект Traxler [10]
Важный эффект Aschenbrener and Far [18], Morian et al.[15]
Включение переработанных материалов и повторный нагрев Значительный эффект Mogawer et al. [19]
Тип растения Значительный эффект Terrel and Holen [20], Chollar et al. [21]
Производственная температура и хранение в бункере Значительное влияние Mogawer et al. [19], Daniel et al. [22]

Долгосрочное старение Совокупный источник Не влияет на лабораторное старение Morian et al.[15]
Общая пористость Значительный эффект Кемп и Предоэль [23]
Источник связующего Значительный эффект Morian et al. [15]
Содержание асфальта Значительный эффект Кари [24]
Нет эффекта Rolt [25]
Воздушные пустоты
Нет эффекта Rolt [25]
Проницаемость дорожного покрытия Значительное влияние Кари [24]
Глубина покрытия Поле старения не ограничено верхом 25 мм тротуар; наблюдаемый градиент старения в поле Farrar et al. [28]
Старение уменьшается с глубиной Sirin et al. [29]
10-летнее старение в полевых условиях может привести к ухудшению качества 2-го слоя Wu et al.[30]
Рабочая температура Значительное влияние Кемп и Предел [23], Ролт [25], Эппс Мартин и др. [31], Сирин и др. [28]
Время воздействия Значительный эффект Rolt [25]
Ультрафиолетовое излучение Значительное влияние Ли [32]

1 9329 9329 10,3 10,2 932 9329 10,6 5,1

Код асфальта и источник сырой нефти AAA-1 Канада AAB-1 США AAC-1 Канада AAD-1 США AAF AAF -1 США AAK-1 Венесуэла AAM-1 США

Элементный анализ %) 83.9 82,3 86,5 81,6 84,5 85,6 83,7 86,8
H (%) 10,0 10,6 10,0 10,6 11,2
H + C (%) 93,9 92,9 97,8 92,4 94,9 96,1 93,9 98,0 93,9 98,0 932934 93,9 98,0 932934 6 0,8 0,9 0,9 1,1 1,1 1,0 0,5
N (%) 0,5 0,5 0,7 0,83 0,6 0,7 0,6
S (%) 5,5 4,7 1,9 6,9 3,4 1,3 6,4 1,2
913 934 1,2
934 146 310 87 37 1480 58
Ni (частей на миллион) 86 56 141334 63 145 63 145 35329
Fe (частей на миллион) <1 16 - 13 100 48 24 255
Компонент nt анализ
Асфальтены (%) 18.3 18,2 11,0 23,0 14,1 5,8 21,1 3,9
Насыщенность (%) 10,6 8,6 932 9329 10,6 8,6 1,9
Полярные ароматические углеводороды (%) 37,3 38,3 37,4 41,3 38,3 51,2 41,8 50,3 41,8 50,3 50,398 33,4 37,1 25,1 37,7 32,5 30,0 41,9

, основная характеристика - атомы металла. асфальтного сырца. Гетероатомы вносят свой вклад во многие уникальные химические и физические свойства асфальта, взаимодействуя с молекулами. Например, сера реагирует легче, чем углерод и водород, с включением кислорода в структуру асфальта, что приводит к окислительному старению асфальта [45].

Согласно методу Корбетса [46], эти химические элементы объединяются, чтобы сформировать четыре основных компонента или фракции асфальтового цемента: асфальтены, насыщенные углеводороды, нафталиновые ароматические углеводороды и полярные ароматические углеводороды (или смолы), каждый из которых придает асфальту различные характеристики. Асфальтены и насыщенные углеводороды обычно несовместимы и объединяются ароматическими соединениями. Асфальтены в основном ответственны за вязкость (т. Е. За эффекты упрочнения), тогда как обилие ароматических углеводородов и насыщенных веществ снижает пластичность (т.е.е., упругие эффекты). Некоторые исследователи разделяют асфальт на две широкие химические группы в соответствии с методами осаждения Ростлера [47], а именно асфальтены и мальтены с низким молекулярным весом. Мальтены представляют собой вязкие жидкости, состоящие из смол и масел [48]. При химическом и физическом взаимодействии между этими фракциями образуется сложная смесительная система асфальта [49–52]. Компонентный анализ различных типов асфальта представлен в таблице 1.

Исследователи [53, 54] использовали гель-проникающую хроматографию высокого давления (HP-GPC) для разделения асфальта на различные фракции и независимо изучили влияние процесса старения на асфальт. составные части.Исследования химического состава асфальта в результате старения показывают, что содержание асфальтенов увеличивается, а содержание смол и ароматических углеводородов уменьшается. В результате увеличения содержания асфальтенов асфальт становится более твердым (то есть более жестким), что может легко проявляться в уменьшении проникновения и повышении температуры размягчения и вязкости [55]. На рис. 4 показано влияние старения на химический состав типичного асфальтового вяжущего. Исследователи также указали, что из-за старения соотношение асфальтенов / мальтенов изменяется, вызывая увеличение вязкости битума, становясь более твердым и хрупким [1].


Физические и химические свойства битумов со временем меняются из-за воздействия различных условий окружающей среды в полевых условиях в течение срока их службы. С 1930-х годов исследования продолжали развивать понимание механизмов, способствующих краткосрочному и долгосрочному старению [56]. Механизмы, вызывающие старение связующего, включают окисление, улетучивание, тиксотропию (или стерическое упрочнение), полимеризацию под действием актиничного света и конденсационную полимеризацию под воздействием тепла [6, 10, 51, 57].Среди них окисление, улетучивание и стерическое упрочнение считаются основными механизмами, связанными с процессом старения асфальтобетонных смесей [51, 57–59]. Во время производства, укладки и уплотнения асфальтобетонная смесь подвергается воздействию более высоких температур, что вызывает старение из-за окисления и потери летучих соединений. Напротив, длительное старение во время эксплуатации происходит при более низкой температуре, в первую очередь из-за механизма окисления [60].

2.1. Окисление

Многие исследователи занимались химией окисления связующего [8, 52, 61–63].Окисление - это необратимая химическая реакция между молекулами кислорода и компонентами сыпучего асфальта, приводящая к значительным изменениям желаемых физических и / или механических свойств асфальта. Окислительное старение асфальта, как полагают, вызвано образованием кислородсодержащих полярных химических функциональных групп на молекулах асфальта, что, в свою очередь, может вызывать агломерацию между молекулами из-за увеличения химиофизических связей, таких как водородные связи, сила Ван-дер-Ваальса и кулоновская сила [ 41, 64, 65].

Влияние окисления вяжущего в дорожной одежде на ее характеристики весьма противоречиво. Сложные органические компоненты асфальта вступают в реакцию с кислородом воздуха и ультрафиолетовым (УФ) излучением, и, как следствие, поверхность дорожного покрытия становится твердой, что приводит к образованию трещин. Кунс и Райт [66] сообщили, что окисление связующего происходит только в верхнем дюйме дорожного покрытия и ниже верхнего дюйма; на связующее практически не влияют годы использования и годы воздействия окружающей среды. Недавно разработанное «Механистическое эмпирическое руководство по проектированию дорожной одежды» [67] также предполагает в своих расчетах, что связующие окисляются только в верхнем дюйме.Как следствие, окисление вяжущего и, как следствие, увеличение жесткости покрытия на самом деле может иметь положительное и благотворное влияние на усталостную долговечность покрытия [8].

Однако Walubita et al. [68] и Валубита [69] указали, что окисление вяжущего в дорожных покрытиях может иметь очень значительное негативное влияние на усталостную долговечность дорожного покрытия. Более веские доказательства твердения дорожного покрытия глубоко под поверхностью были получены на основе обширных данных Glover et al. [70] и Аль-Азри и др. [71], где было заполнено большое количество тротуаров в Техасе, вяжущее было извлечено и восстановлено, а затем испытано для определения жесткости вяжущего как функции возраста покрытия.Сообщается о повышении жесткости и снижении пластичности асфальтовых смесей из-за окисления, которое может снизить их сопротивление усталостному растрескиванию [72].

Окисление асфальта вызывает изменения химического состава асфальта. Насыщенные вещества остаются практически неизменными из-за их низкой химической активности, тогда как другие три фракции демонстрируют значительные вариации [73, 74]. В результате в молекулах асфальта образуются функциональные группы (т.е. карбонильные и сульфоксидные группы), что приводит к уменьшению ароматических фракций и увеличению фракций асфальтенов [1].Было предпринято множество попыток количественной оценки окисления для лучшего понимания старения асфальта. Лю и др. [75] указали, что площадь карбонильной области (CA) в ИК-Фурье спектрах является прямой мерой окисления связующего, и процент карбонильных соединений можно использовать для оценки изменений, вызванных окислительным старением [8]. Содержание карбонила зависит от температуры и парциального давления кислорода.

Скорость реакции карбонила описывается формулой [8], где = скорость реакции карбонила, = коэффициент частоты, = давление, = порядок реакции, = энергия активации, = газовая постоянная, и = абсолютная температура.Исследования показывают, что значения, и различаются для разных типов асфальта.

2.2. Улетучивание

Улетучивание - еще один важный механизм, который происходит во время горячего перемешивания и изготовления асфальтового цемента. При высоких температурах более легкие молекулярные массы могут испаряться и улетучиваться в атмосферу [1, 10]. Это может иметь большее значение при приготовлении модифицированных битумных вяжущих, когда маслоподобные соединения испаряются из асфальта. Когда тонкая асфальтовая пленка вступает в контакт с заполнителями при температуре 150 ° C или выше, ароматические фракции быстро испаряются, а фракции асфальтенов обычно увеличиваются между 1 и 4% [76].В результате этой реакции образуются пары и пары в зависимости от площади поверхности контакта между асфальтовой пленкой и заполнителями [77]. В результате потери веса свойства текучести асфальта снижаются, то есть на вязкость влияет улетучивание, особенно с учетом скорости, с которой происходит улетучивание [78, 79]. Исследователи [6, 80] обнаружили, что вязкость увеличивается от 150 до 400%. Значительное увеличение модуля и уменьшение фазового угла наблюдались из-за улетучивания [81].Андерсон и Бонаквист [60] предположили, что количественная оценка потери летучих соединений имеет важное значение для лучшего понимания твердения асфальта во время кратковременного старения.

2.3. Стерическое упрочнение

Стерическое упрочнение, также известное как физическое упрочнение, происходит со временем, когда асфальтовый цемент подвергается воздействию низкой температуры. В этом процессе молекулярная структура асфальта реорганизуется, что влияет на его асфальтеновые фракции [82]. Последствиями стерического твердения являются повышенная вязкость, небольшое сокращение объема и, в конечном итоге, твердение асфальта [10, 83].Стерическое упрочнение более выражено при температурах, близких к 0 ° C, и его следует учитывать при испытании асфальта при очень низкой температуре. Поскольку это упрочнение является результатом структурной реорганизации молекулы при низких температурах [51], оно может быть обращено вспять посредством нагрева или механической работы [84].

3. Лабораторное ускоренное старение и методы оценки

Асфальт выдерживается в лабораторных условиях более быстрыми темпами за счет применения тепла и воздуха для моделирования старения в полевых условиях и, следовательно, для прогнозирования характеристик асфальтового покрытия.Самая ранняя работа по моделированию старения в лаборатории была сделана Доу [5], который использовал расширенный тест на нагрев. С тех пор множество исследований [6, 10, 27, 50, 57, 85–99] было посвящено оценке влияния старения на характеристики асфальтовых материалов. После обработки для ускорения старения образцы обычно изучаются для количественной оценки изменений свойств битумного вяжущего / смеси до и после обработки старением (обычно известного как индекс старения). Свойства, исследуемые во время исследований старения, как правило, включают потерю веса, вязкость, пенетрацию, пластичность, предел прочности на разрыв и модуль жесткости.

Обработку асфальта или испытания, связанные со старением асфальтовых материалов, можно условно разделить на две категории, а именно: испытания, проводимые на асфальтовом вяжущем, и испытания, проводимые на асфальтовых смесях. Поэтому обсуждение работы представлено в следующих двух разделах: исследования вяжущего и исследования смесей.

3.1. Binder Studies

Исследователи разработали несколько методов испытаний для определения свойств асфальтовых вяжущих путем моделирования старения асфальта на заводе по производству горячей смеси и в течение срока службы дорожного покрытия.В большинстве этих исследований использовались тонкопленочные печи для старения асфальта с применением процедуры длительного нагрева и продувки воздухом (или окисления). Наиболее часто используемыми и стандартными испытаниями для моделирования старения горячей смеси асфальта являются испытание в тонкопленочной печи с прокаткой ((RTFOT) ASTM D2872 [100], AASHTO T240 [101]) и испытание в тонкопленочной печи ((TFOT) ASTM D1754 [102], AASHTO T179 [103]). Сосуд для выдерживания под давлением (PAV) используется для моделирования длительного старения битумного вяжущего, которое наблюдается в полевых условиях [104]. В текущих спецификациях вяжущего Superpave, оцениваемое асфальтовое вяжущее должно быть подвергнуто RTFOT для кратковременного старения при 163 ° C в течение 85 минут с последующим процессом PAV для имитации старения в полевых условиях в течение нескольких лет.

TFOT был впервые введен Льюисом и Велборном [105] для моделирования кратковременного старения путем воздействия температуры 163 ° C на асфальт с толщиной пленки 3,2 мм в течение 5 часов. Однако исследователи подвергли критике TFOT из-за того, что толщина пленки намного больше, чем обычно наблюдается в полевых условиях, и за неравномерное старение по всей глубине асфальта [58]. Многие исследователи пытались разработать или улучшить методы испытаний для старения асфальта с более репрезентативной толщиной пленки. Одной из таких попыток было испытание модифицированной тонкопленочной печи, проведенное Эдлером и др.[106], которые использовали пленку толщиной 100 мкм мкм с дополнительным увеличенным временем воздействия до 24 часов. Исследователи также предложили некоторые другие методы тестирования, такие как тест на микропленку Shell [107], испытание на прокатной микропленке в печи [108], испытание на долговечность в наклонной печи [23] и испытание на ускоренное старение тонкой пленки [92] для лучшего моделирования старения битумного вяжущего.

Самой значительной модификацией TFOT был RTFOT, разработанный Калифорнийским отделением шоссе [109], где восемь стеклянных бутылок, каждая из которых содержит 35 г асфальта, выдерживаются путем нагревания и окисления тонких пленок 1.25 мм. Этот метод обеспечивает равномерное старение асфальта без образования корки и достаточно хорошо коррелирует с затвердеванием асфальта с наблюдаемым в процессе горячего перемешивания [110]. Однако несколько исследователей [111–113] выявили ряд недостатков (например, просыпание из бутылок с RTFOT) в RTFOT, особенно при тестировании модифицированных битумных вяжущих. Чтобы преодолеть эти ограничения, исследователи разработали усовершенствованные методы тестирования, такие как испытание в модифицированной тонкопленочной печи с прокаткой ((RTFOTM), Bahia et al. [96]), модифицированная немецкая вращающаяся колба [111, 114] (MGRF) и испытание на поток перемешиваемого воздуха [ 115] (SAFT) для оценки кратковременного старения чистого и модифицированного битумного вяжущего.

Хотя испытания в тонкопленочной печи могут адекватно имитировать кратковременное старение асфальтового вяжущего, они не дают точного прогнозирования длительного старения в течение срока службы дорожного покрытия. Для прогнозирования длительного старения был предпринят ряд попыток сочетания испытаний в тонкопленочной печи с окислительным старением, таких как испытание на долговечность в Айове [32], окислительная бомба под давлением [106], устройство для испытания на ускоренное старение [116], PAV [80] , 117] и испытание на старение под высоким давлением [118]. Среди них лечение ПАВ считается наиболее надежным методом имитации длительного старения.В этом процессе асфальт, выдержанный методом RTFOT, подвергается воздействию температуры 100 ° C в течение 20 часов при давлении 2,07 МПа для воспроизведения эффектов старения в полевых условиях. Как правило, он имитирует старение 8–10 лет срока службы дорожного покрытия в соответствии со стандартами США [79]. Однако 20 часов кондиционирования в PAV может быть недостаточно для суровых погодных условий, например, на Ближнем Востоке, где может потребоваться до 70 часов кондиционирования для имитации полевого старения 5-летнего асфальтового покрытия (Рисунок 5).


В недавнем исследовании NCHRP (проект № 9-36) Андерсон и Бонаквист [60] попытались разработать улучшенную процедуру для замены RTFOT и PAV одним аппаратом для моделирования кратковременного и длительного старения.Они исследовали как MGRF, так и SAFT, но с разными условиями эксплуатации. Попытки использовать MGRF не увенчались успехом, однако SAFT с модифицированным рабочим колесом оказался в некоторой степени успешным для моделирования как краткосрочного, так и длительного старения асфальтового вяжущего.

Атомно-силовая микроскопия (АСМ) часто используется для изучения старения битумного вяжущего на микроскопическом уровне и оценки изменения микромеханических и микрореологических свойств. АСМ - это инструмент неразрушающей визуализации, который может предоставить информацию о топографии поверхности, жесткости, липкости и молекулярном взаимодействии на микроуровне материалов [119, 120].На изображениях АСМ заметна пчелиная структура (черные и желтые полосы), которая указывает на асфальтеновую фазу в битуме [121, 122]. Наличие таких микроструктур отчасти определяет макроуровневые свойства битума, такие как жесткость, вязкоупругость, пластичность, адгезия, излом и характеристики заживления. Эволюция этих микроструктур по мере старения и связанная с результирующей механической реакцией находится в центре внимания, чтобы лучше понять долгосрочные свойства битумов.

В последние дни АСМ стал популярным методом и используется многими исследователями [123–126] для характеристики влияния кратковременного, длительного старения и ультрафиолетового (УФ) излучения на морфологию асфальтовых вяжущих.Об увеличении микроструктуры в форме пчелы при старении ПАВ сообщили Huang и Pauli [127], Wu et al. [128] и Zhang et al. [123]. Zhang et al. [123] показали, что моделируемое в лаборатории старение значительно влияет на морфологию битума, и эти изменения морфологии сильно коррелируют с физическими свойствами, а также химическим составом связующих до и после старения. Общая поверхностная жесткость увеличилась, и поверхность битума стала более твердой [123]. Как содержание асфальтенов, так и размер микроструктур играют роль в определении микромеханических свойств асфальта [129].О важной взаимосвязи между микроструктурными изменениями, отображаемыми на изображениях АСМ, и изменениями вязкоупругих свойств композитов, полученными в результате измерений, сообщили Allen et al. [124]. Das et al. [126] обнаружили снижение липкости вяжущего при старении, и в результате адгезия образцов асфальтового вяжущего подверглась отрицательному воздействию, что привело к разрыву адгезионного соединения между вяжущим и заполнителями. Исследователи сообщили, что модуль микроструктуры всегда выше модуля матрицы при измеренной температуре, как показано на рисунке 6.Также было отмечено, что увеличение модуля из-за воздействия УФ-излучения выше, чем при окислении, и самое высокое значение всегда получалось после комбинированного воздействия УФ-излучения и окисления. Аналогичное наблюдение было обнаружено для 3 разных связующих из разных источников. АСМ также использовался для исследования влияния старения на модифицированные битумные вяжущие по сравнению с контрольными вяжущими [127, 128, 130].

3.2. Исследования смесей

По сравнению с исследованиями асфальтового вяжущего, исследований старения асфальтовых смесей было относительно мало.Большая часть ранних работ по старению асфальта проводилась исключительно на связующих, без использования смесей [6, 131]. В конце концов, были предприняты попытки проанализировать старение системы смеси асфальт-заполнитель путем измерения изменений проницаемости и вязкости извлеченных и восстановленных связующих [91, 132–134]. Исследования, представленные в NCHRP Project 9-6 [134], включали измерения и сравнение вязкости и проницаемости связующих, извлеченных и извлеченных из смесей, выдержанных в лаборатории в различных условиях, с таковыми из смесей, произведенных в полевых условиях.Испытания на ограниченный модуль упругости были также проведены на прессованных в лаборатории образцах. Однако характеристики длительного старения, имитирующие 5-10 лет эксплуатации, пришлось экстраполировать из имеющихся данных за 2 года. Более реалистичный подход к моделированию старения асфальтовой смеси состоит в том, чтобы подвергнуть асфальтобетонные смеси различным условиям старения, измерить физические свойства выдержанных смесей, а затем сравнить их с образцами, выдержанными в полевых условиях [57, 135, 136].

В недавних исследованиях асфальтовых смесей исследователи показали, что старение асфальтобетонных смесей в условиях неравномерного поля по глубине и поверхность асфальтового покрытия стареют быстрее, чем дно [34, 137].О охрупчивании асфальтовой смеси из-за старения сообщили Rahmani et al. [38] и Elwardany et al. [138]. Хрупкость увеличивается с периодом выдержки при всех режимах старения и со временем в полевых условиях эксплуатации [139]. В результате снижается сопротивление усталостному растрескиванию и долговечность асфальтобетонных смесей, что становится более заметным при повышении температуры [140]. Gao et al. [141] показали, что деградация модуля упругости асфальтобетонной смеси увеличивается с увеличением периода старения.Азри и Мохсени [142] показали, что разные асфальтовые смеси стареют по-разному, и это существенно влияет на их краткосрочные и долгосрочные характеристики колейности. Старение увеличивает сопротивление остаточной деформации с точки зрения потока, как сообщает Islam et al. [139] и Бабадопулос и др. [143].

3.2.1. Протокол моделирования старения асфальтовой смеси

Текущая практика, рекомендованная Американской ассоциацией государственных служащих автомобильных дорог и транспорта (AASHTO), заключается в отверждении асфальтовых смесей в течение нескольких часов и дней для краткосрочного и длительного старения соответственно.Процедура тестирования, основанная на работе, проделанной Von Quintus et al. [90] охватывает три типа кондиционирования и представлено в стандартной процедуре AASHTO R30 [144]: (i) Кондиционирование смеси для объемного расчета смеси (ii) Кратковременное кондиционирование для имитации старения, которое происходит во время смешивания и размещения смеси (iii ) Длительное кондиционирование для имитации старения, которое происходит после процесса строительства и в течение всего срока службы покрытия

В соответствии с этой стандартной практикой смесь выдерживают в печи с наддувом в течение разных периодов времени и при разных температурах, как показано на Таблица 3.


Тип кондиционирования Температура Время


9132 9132 913r 9134 9132 913r 135 ° C 4 часа
Длительное старение 85 ° C 5 дней

Заданная температура уплотнения смеси и тип повторно нагретой смеси , так далее.).
3.2.2. Протокол краткосрочного старения

Были проведены исследования по оценке протокола краткосрочного старения для моделирования старения асфальтовой смеси во время производства, укладки и строительства слоя асфальтового покрытия. Хотя результаты эксплуатационных испытаний смеси, произведенной в лаборатории и на заводе, не были точным совпадением, в прошлом существовало общее мнение, что лабораторное старение является репрезентативным для полевого старения [145]. Однако из-за недавних разработок в технологии асфальта и изменений в компонентах смеси, обработке смеси и конструкции завода, обоснованность текущих методов проектирования смеси для удовлетворения ожиданий производительности ставится под сомнение.

В комплексном исследовании Bell et al. [57] оценили старение асфальтовой смеси и обнаружили, что протокол краткосрочного старения AASHTO достаточно хорошо моделирует старение асфальтовой смеси, за исключением нескольких консервативных прогнозов. Исследования, проведенные Калифорнийским университетом в Беркли совместно с Университетом штата Орегон и Austin Research Engineers, Inc. [57], также показали, что протокол является адекватным на основании модуля упругости и результатов испытаний на непрямое растяжение. Ашенбренер и Фар [18] провели обширное исследование по всему Колорадо, кондиционировали смеси при температуре уплотнения в полевых условиях в течение различной продолжительности (0–8 часов) и обнаружили, что протокол краткосрочного старения эквивалентен 2–4 часам на основе теоретической максимальной плотности и асфальта. впитывание и 1–3 часа на основе результатов гамбургского теста на отслеживание колес.Исследователи рекомендовали кондиционировать смеси, полученные в лаборатории, в течение 2 часов при температуре уплотнения в полевых условиях, чтобы имитировать старение и абсорбцию асфальта в процессе производства. Эппс Мартин и др. [31] также оценили различные протоколы краткосрочного старения, и окончательная рекомендация заключалась в том, чтобы выдержать лабораторную смесь при 135 ° C в течение 2 часов перед уплотнением.

3.2.3. Протокол о долгосрочном старении

Исследователи использовали различные процедуры кондиционирования (длительный нагрев, окисление и обработка УФ / инфракрасным излучением) для исследования долговременного старения асфальтового покрытия.Кондиционирование также может проводиться как на рыхлой смеси, так и на уплотненном образце. Выдержка в печи уплотненного образца обычно используется для моделирования длительного старения асфальтобетонных смесей. Однако в уплотненном образце сообщалось о существовании градиента окисления в радиальном направлении и по высоте образца [27]. Поэтому исследователи [90, 138, 146–149] иногда предпочитали кондиционирование рыхлой смеси при повышенной температуре из-за однородности и эффективности старения. Однако уплотнение кондиционированного образца рыхлой смеси часто оказывалось проблематичным, поскольку смесь становилась слишком жесткой из-за потери летучести связующего [148].Значительно большое число вращений, таким образом, требовалось более высокое напряжение сдвига для уплотнения образца сыпучих смесей, что приводило к деградации агрегатных структур, следовательно, меняло свойства смеси [148, 150]. Температура, при которой происходит старение, также важна. Более высокая температура (> 95 ° C) может вызвать оседание / деформацию и повлиять на распределение воздуха в уплотненном образце [148]. Температура старения сыпучей смеси более 135 ° C приводит к значительному изменению взаимосвязи между реологией и химическим составом битумного вяжущего и влияет на характеристики смеси [151].Оптимальная температура старения сыпучей смеси 95 ° C предложена исследователями [138].

Ряд исследований [90, 138, 146, 147, 149, 152] показали, что протокол длительного старения может варьироваться в зависимости от климатических условий, метода лабораторного старения, температуры лабораторного старения или типа асфальта. Более того, большинство этих исследований оценивают только долгосрочное старение асфальтовой смеси без надлежащей проверки полевых результатов, особенно на уровне компонентов. Стандартный протокол для моделирования старения в полевых условиях - это кондиционирование уплотненного образца при 85 ° C в течение 5 дней в соответствии с AASHTO R30.

В протоколе используется одна температура и не учитываются различные условия окружающей среды или свойства смеси. Таким образом, применимость протокола к различным климатическим условиям (например, как на Ближнем Востоке) сомнительна без полевой проверки. Асфальтовое покрытие испытывает тяжелые погодные условия при высоких температурах (часто превышающих 40 ° C в летние месяцы) в регионе Персидского залива. Кроме того, летом здесь нет осадков, а в остальное время года их очень мало.Эти повышенные температуры значительно увеличивают окисление вяжущего, что может привести к усталостному растрескиванию и, в конечном итоге, к разрушению дорожного покрытия при большой и повторяющейся нагрузке от движения транспорта. Предыдущие исследования также демонстрируют необходимость разработки протокола старения, учитывающего климатические условия, объем движения и свойства смеси [27, 57, 136, 153]. Эти исследования рекомендовали учитывать эти изменения еще на стадии проектирования, чтобы улучшить анализ характеристик асфальтовых покрытий.

В таблице 4 представлены основные исследования, посвященные протоколу моделирования длительного старения.Bell et al. [57] включили различные климатические зоны для оценки протокола длительного старения асфальтовых смесей. Экспериментальные результаты предполагают кондиционирование уплотненного образца в течение 2 дней при 85 ° C или 1 дня при 100 ° C для имитации длительного старения новых покрытий (возрастом от 1 до 3 лет). Смесь необходимо выдерживать в течение более длительного времени (от 4 до 8 дней при 85 ° C или от 2 до 4 дней при 100 ° C), чтобы прогнозировать старение на 9-10 лет полевого старения. Однако авторы предложили избегать более высокой температуры 100 ° C, поскольку кондиционирование смесей при этой температуре может привести к повреждению образцов.Что еще более важно, исследователи рекомендовали дальнейшие исследования для достижения лучшей проверки и моделирования для более широкого диапазона климатических зон. Исследователи также рекомендовали разработать модель для моделирования старения полей с использованием входных данных, описывающих климатические зоны и движение транспорта. Возможные исходные данные могут включать интенсивность движения, максимальную и минимальную температуру воздуха, среднее количество осадков, возраст тротуаров и возраст лабораторных смесей.


Ссылки Старение Результаты

Bell et al.[57] 0, 2, 4 и 8 дней при 85 ° C 1, 2 и 4 дня при 100 ° C 2 дня при 85 ° C или 1 день при 100 ° C = 1–3 года поле старение 8 дней при 85 ° C или 4 дня при 100 ° C = 9 лет полевого старения
Brown and Scholz [154] 4 и 5 дней при 85 ° C 5 дней при 85 ° C имитирует длительный -временное старение дорожных покрытий UK; 4 дня при 85 ° C имитирует 15-летнее дорожное покрытие в США
Harrigan [26] и Houston et al. [27] 5 дней при 80, 85 и 90 ° C 5 дней при 85 ° C = 7–10 лет полевой выдержки
Epps Martin et al.[31] От 1 до 16 недель при 60 ° C 4–8 недель при 60 ° C = первое лето полевой выдержки
Islam et al. [139] 1, 5, 10, 15, 20 и 25 дней выдержки в печи при 85 ° C Однодневная выдержка в лабораторных условиях близка к 1 году выдержки в полевых условиях
Yin et al. [155] 2 недели при 60 ° C, 3 дня при 85 ° C и 5 дней при 85 ° C 2 недели при 60 ° C = 7–12 месяцев Полевое старение 5 дней при 60 ° C = 12–23 месяцев выдержки в полевых условиях
Sirin et al.[29] 0, 3, 7, 15, 30, 45, 60, 90 и 120 дней при 85 ° C на уплотненном образце 45 и 75 дней при 85 ° C = 5 лет полевой выдержки в условиях Ближнего Востока. для ношения и основного курса соответственно
0, 1, 2 и 3 дня при 135 ° C на рыхлых смесях 2-3 ​​и 1-2 дня при 135 ° C = 5 лет полевого старения в условиях Ближнего Востока для ношения и основного слоя, соответственно

Ромеро и Роке [156] указали, что использование процедур длительного старения с использованием уплотненных смесей может быть не лучше, чем используемые в настоящее время краткосрочные Следует прекратить процедуры выдержки в печи и, следовательно, длительную выдержку в печи с использованием образцов уплотненного асфальта.Хьюстон и др. [27] выполнили долгосрочное исследование старения для разных участков в Соединенных Штатах, а также для разных агрегатов и связующих. Исследователи рассматривали возможность кондиционирования образца при различных температурах (80 ° C, 85 ° C и 90 ° C) в течение 5 дней. Сообщалось о высокой вариабельности данных с выбранных участков, и из-за этой вариабельности и неспособности учесть различные переменные, такие как условия окружающей среды и свойства смеси, исследователи не смогли разработать новую процедуру или пересмотреть существующую в течение длительного времени. срок кондиционирования асфальтобетонных смесей.Был сделан вывод, что текущая стандартная процедура недостаточна для реального моделирования и прогнозирования длительного старения асфальтобетонных смесей в полевых условиях. Весьма желательна разработка новой процедуры, учитывающей различные условия окружающей среды и свойства смеси, такие как содержание пустот в воздухе. Кроме того, они рекомендовали включать различные типы материалов: немодифицированные вяжущие, модифицированные вяжущие, резиновые вяжущие и восстановленное асфальтовое покрытие. В недавнем исследовании Yin et al. [156] предложили протоколы долгосрочного старения: 2 недели при 60 ° C и 5 дней при 85 ° C. Получили смеси с эквивалентным старением в полевых условиях в течение 7–12 месяцев и 12–23 месяцев, соответственно, с учетом технологии WMA, переработанных. материалы, абсорбция заполнителя, связующее, модифицированное полимером, и температура производства.Сирин и др. [29] указали на сильное старение асфальтовых покрытий в регионе Ближнего Востока из-за суровых условий окружающей среды. Для таких условий потребуется 45 и 75 дней при 85 ° C на уплотненном образце, чтобы смоделировать 5-летнее старение в полевых условиях для износа и основного слоя, соответственно. Чтобы избежать такого длительного периода кондиционирования, исследователи предложили в качестве альтернативы кондиционирование рыхлой смеси и обнаружили, что потребуется 2-3 и 1-2 дня при 135 ° C, чтобы смоделировать одинаковый уровень старения для ношения и основного курса. соответственно.

4. Антиоксидантные добавки

Контроль старения асфальта важен, потому что старение вызывает жесткость и хрупкость, которые могут привести к растрескиванию и преждевременному разрушению асфальтового покрытия. Как обсуждалось в предыдущих разделах, существует несколько механизмов упрочнения асфальта. Окисление во время производства, уплотнения и эксплуатации асфальтобетонной смеси является основным и считается наиболее понятным и наиболее простым для моделирования в лаборатории [157, 158]. Поэтому исследователи попытались уменьшить / минимизировать окислительное твердение с помощью химических добавок, чтобы получить более долговечное покрытие и существенную экономию в стоимости жизненного цикла.

Добавки, которые используются для модификации асфальта и замедления старения, называются антиоксидантами. Когда антиоксиданты добавляются к асфальту в качестве модификаторов, они контролируют окисление, улавливая или удаляя свободные радикалы, которые ответственны за инициирование и / или распространение окисления. Эти антиоксиданты (например, диамилдитиокарбамат свинца (LDADC)) действуют как жертвенные частицы, которые окисляются вместо асфальтовых связующих [158, 159]. Некоторые другие антиоксиданты действуют за счет реакции с полярными соединениями и / или катализаторами окисления, такими как металлы, присутствующие в асфальтах.

На рынке имеется множество антиоксидантов для битума асфальта. В зависимости от способа контроля окисления антиоксиданты можно разделить на четыре основные группы: первичные антиоксиданты, вторичные антиоксиданты, хелаторы металлов и светостабилизаторы [158, 160]. Первичные антиоксиданты имеют реактивные группы ОН или NH и действуют как поглотители свободных радикалов, отдавая или принимая электроны от свободных радикалов и тем самым нарушая цепные реакции окисления. Вторичные антиоксиданты включают соединения серы и фосфора, такие как сульфиды, тиоэфиры, дисульфиды и фосфаты.Они действуют как разлагатели пероксида или гидропероксида, восстанавливая их до стабильных соединений. Хелаторы металлов действуют, улавливая следы металлов, таких как ванадий, никель и железо, которые, как полагают, ускоряют образование свободных радикалов, действуя как катализаторы на стадии распространения [160]. Наконец, светостабилизаторы используются для предотвращения деградации за счет поглощения вредной лучистой энергии.

4.1. Исследования антиоксидантных добавок для замедления старения асфальтовой смеси

В нескольких исследованиях сообщалось о преимуществах использования связующих, модифицированных антиоксидантами.Хотя большинство этих исследований довольно старые, некоторые антиоксиданты (например, гашеная известь, свинцовые антиоксиданты и технический углерод) дают многообещающие результаты [50, 88, 160–164]. В этих исследованиях исследователи использовали различные добавки для замедления окислительного твердения асфальтовых вяжущих и оценили антиоксидантные системы, определяя ухудшение физических свойств асфальта, в основном вязкости и пластичности. Однако большинство этих систем для замедления окислительного твердения не работают удовлетворительно в полевых условиях из-за таких проблем, как разложение, летучесть и потеря антиоксиданта из асфальтовой системы.

Несколько недавних исследований были проведены для изучения влияния использования антиоксидантных добавок на характеристики связующего (таблица 5). Мохамед [165] оценил потенциал CRABit (CR30 и CR50) в качестве модификатора антиоксиданта для использования в плотных асфальтовых смесях (ACW14). Исследователь провел исследование в два этапа; Первая фаза заключалась в испытании реологических характеристик нового продукта с использованием влажной смеси с помощью реометра динамического сдвига (DSR), а вторая фаза включала приготовление смеси ACW14, содержащей основу и модифицированный битум, путем сухой смеси и их тестирование для определения основных свойств (т.е., модуль упругости, сопротивление непрямому растяжению, ползучести и усталости) до и после старения образца. Исследователь обнаружил улучшение инженерных свойств и производительности с модификацией, особенно с CR30.

Мохаммед (Mohammed) предел прочности на разрыв, ползучесть и сопротивление усталости 91 из DSR и BBR

Ссылки Антиоксидант Оценка свойств Результаты

165329
165329 Улучшение технических свойств и рабочих характеристик с помощью модификации, особенно с CR30
Apeagyei et al.[166, 167] Фурфурол и DLTDP; AOXADUR Потенциал растрескивания, динамический модуль, податливость и предел прочности на разрыв Асфальтовые смеси, модифицированные антиоксидантами, показали лучшие результаты по сравнению с немодифицированными асфальтобетонными смесями
Apeagyei [59] DLTDP / фурфурол, гашеная известь, гашеная известь технический углерод, Irgafos P-EPQ и Irganox 1010 Модуль жесткости, потенциал растрескивания Добавки фурфурола и DLTDP обеспечивали снижение старения на 40% по сравнению с немодифицированными связующими.Связующие, модифицированные антиоксидантами, имели более низкий модуль жесткости и жесткость при изгибе по сравнению с необработанными связующими
Reyes [168] Витамин E в качестве модификатора антиоксиданта; гашеная известь и летучая зола в качестве стабилизаторов Вязкость, жесткость, усталостная прочность, возможность образования колеи Связующее, модифицированное витамином Е, показало лучшую стойкость к усталостному растрескиванию, но есть опасения по поводу стойкости к колейности
Pan et al. [52] Лигнин на основе кониферилового спирта Вязкость и пластичность Лигнин на основе кониферилового спирта может замедлять окисление и отверждение
Williams [169] Сельскохозяйственные лигнинсодержащие побочные продукты этанола 332–12% Реологические свойства Лигнинсодержащие побочные продукты проявляли полезную антиоксидантную активность и повышали жесткость связующего на всех этапах старения
Университет Иллинойса в Урбане-Шампейн [158] AOXADUR, который состоит из трех добавок: альдегида, тиоэфира, и аналитик. Жесткость, термическое напряжение и потенциал растрескивания Резкое увеличение высокотемпературной жесткости и существенное снижение низкотемпературной жесткости
Дессуки и Диас [170] Раствор сополимеров этилен-бутилен / стирол (SEBS) и раствор стирол-бутадиенового каучука (SSBR) с улучшенными антиоксидантными добавками Хрупкость Сополимеры улучшили колейность и влагостойкость модифицированных асфальтобетонных смесей, но они снизили усталостную долговечность по сравнению с контрольной смесью

Apeagyei et al.[166] оценили потенциал растрескивания асфальтовых смесей, содержащих различные уровни антиоксидантов. Исследователи рассмотрели два уровня старения в печи с принудительной тягой, чтобы моделировать краткосрочные и долгосрочные условия старения в печи (STOA и SLOA, соответственно). Кроме того, использовались два уровня антиоксидантной модификации: фурфурол (ароматический альдегид) и дилаурилтиодипропионат (DLTDP - антиоксидант и термостабилизатор) с асфальтовыми связующими. Процент смешивания варьировался от 0,2% до 10% мас. / Мас. Базового асфальта, который вводили в базовый асфальт с использованием смесителя Barnant с 2-дюймовыми лопастями, работающего со скоростью 750 об / мин.Результаты показали, что асфальтовые смеси, модифицированные антиоксидантами, работают лучше, чем смеси немодифицированных битумов. Связующие, модифицированные антиоксидантами, показали, по меньшей мере, примерно на 50% более низкую жесткость на изгиб по сравнению с немодифицированным асфальтовым вяжущим при низкой температуре (от примерно -4 ° C до примерно -58 ° C), что указывает на улучшенное сопротивление усталости. Также было обнаружено, что модификация дает по меньшей мере примерно на 18% более высокую жесткость по сравнению с немодифицированным асфальтовым вяжущим при высокой температуре (от примерно 46 ° C до примерно 82 ° C), что указывает на лучшую устойчивость к колейности.В отдельном исследовании Apeagyei [167] оценил AOXADOUR как антиоксидантную добавку с базовым связующим PG 64-22 и обнаружил более высокий динамический модуль, улучшенное сопротивление колееобразованию с точки зрения податливости к ползучести, более высокую прочность на разрыв при низкой температуре (-10 ° C), и меньшее влияние старения на поведение разрушения для образцов, обработанных как STOA, так и LTOA. Асфальтовая смесь, модифицированная AOXADUR, показала меньшее сокращение прогнозируемого срока службы при старении и потребовалось больше времени до критического растрескивания по сравнению с контролем (Рисунок 7).


Комбинации различных антиоксидантов были также оценены Apeagyei [59], чтобы определить, существует ли синергетическое поведение между любыми из антиоксидантов.Эти добавки включали DLTDP / фурфурол, гашеную известь, витамин E, технический углерод, Irgafos P-EPQ и Irganox 1010. DSR использовали для исследования реологических свойств необработанных и модифицированных антиоксидантами связующих. Результаты этого исследования показывают, что комбинация добавок фурфурола и DLTDP имела самый низкий индекс старения по сравнению с другими модификаторами. Эта специфическая комбинация обеспечила 40-процентное снижение старения / затвердевания по сравнению с немодифицированными связующими. В общем, связующие, модифицированные антиоксидантами, имели более низкий модуль жесткости и жесткость при изгибе по сравнению с необработанными связующими, которые, как ожидается, будут иметь лучшее сопротивление растрескиванию.Автор рекомендовал провести дальнейшие исследования для подтверждения результатов с использованием дополнительных вяжущих и для оценки свойств как асфальтовых смесей, так и вяжущих.

Рейес [168] оценил потенциал использования витамина Е в качестве модификатора антиоксиданта с двумя типами связующего: немодифицированным (PG 64-22) и модифицированным (PG 70-22). Поскольку витамин Е имеет низкую вязкость, две добавки на основе кальция (гидратированная известь и летучая зола) использовались в качестве стабилизирующих агентов для увеличения жесткости связующего. Исследователь использовал смеситель с высокой скоростью сдвига при 2100 об / мин в течение 1 часа для смешивания каждого образца.Результаты этого исследования показывают, что использование витамина Е снижает вязкость связующих веществ. Кроме того, использование стабилизирующих агентов, таких как летучая зола и гашеная известь, улучшило жесткость связующих, модифицированных антиоксидантом витамином Е. Модифицированные связующие с витамином Е обладали желаемыми характеристиками, которые не допускали бы усталостного растрескивания; тем не менее, были опасения по поводу устойчивости к колейности. Связующее, модифицированное антиоксидантом витамином Е, имело пониженный модуль жесткости и увеличенный фазовый угол. Автор предложил провести эксперименты для определения оптимального процентного содержания антиоксидантов и стабилизаторов для достижения лучших показателей при старении.

Pan et al. [52] выполнили химиофизический анализ на атомистической основе, чтобы облегчить фундаментальное понимание механизмов старения и антиоксидантной защиты и, таким образом, разработать стратегии против старения. В этом исследовании были изучены химические и физические основы окисления асфальта, а также механизм антиокисления лигнина кониферилового спирта. Исследователи разработали хемофизическую среду, основанную на квантовой химии, и изучили различные химические реакции между компонентами асфальта и кислородом и возникающие в результате физические изменения в отличие от традиционного метода оценки ухудшения физических свойств асфальта (т.е. вязкость и пластичность). Были идентифицированы две отдельные стадии старения асфальта; Первоначально асфальты демонстрируют высокую тенденцию к разрыву цепи и высокую реакционную способность с кислородом, вызывая быстрый всплеск образования легкомолекулярных алканов, кетонов и сульфоксидов, за которым следует более медленная скорость окисления и твердения. Авторы предположили, что лигнин кониферилового спирта может быть использован в качестве антиоксиданта для нефтяного асфальта с максимальной эффективностью улавливания радикалов, достигаемой в неокислительном состоянии лигнина (например,g., <130 ° C при парциальном давлении кислорода 1 атм).

Williams [169] оценил потенциал сельскохозяйственных лигнинсодержащих побочных продуктов этанола для использования в качестве антиоксиданта в связующем асфальте. Исследователь использовал четыре побочных продукта, смешанных с четырьмя различными типами асфальтовых вяжущих в диапазоне 3–12%, что дало 52 комбинации обработки. Три побочных продукта содержали лигнин, переработанный из кукурузы, из которого из четвертого лигнина был удален и служил контролем для измерения антиоксидантной активности трех других побочных продуктов лигнина.Тестирование производительности каждой комбинации состояло из DSR и реометра изгибающейся балки (BBR), совпадающего с испытаниями на моделирование старения в полевых условиях с использованием RTFOT и PAV. Результаты показали, что лигнинсодержащие побочные продукты обладают полезной антиоксидантной активностью и повышают жесткость связующего на всех этапах старения. Исследователь предложил провести дополнительные испытания на разделение, чтобы оценить влияние таких переменных, как физический размер и химический состав побочных продуктов.

В зависимости от климатических условий в асфальтовом покрытии наблюдаются два различных типа явлений, связанных со старением.При низкой температуре жесткость асфальта увеличивается, и в результате гибкость асфальтобетона снижается, вызывая растрескивание покрытия из-за усталости или термических напряжений. С другой стороны, более высокая температура смягчает асфальт и, следовательно, снижает жесткость асфальтобетона, делая смесь более восприимчивой к образованию колей. Некоторые виды антиоксидантной обработки являются многообещающими для снижения жесткости связующего, но все же склонны к размягчению при более высоких температурах, затвердеванию при более низких температурах или выщелачиванию со временем.

В 2006 году группа исследователей из Университета Иллинойса в Урбане-Шампейне разработала антиоксидантное средство с использованием AOXADUR, которое состоит из трех добавок: альдегида, тиоэфира и кальализатора. Реакция конденсации альдегида с асфальтом с образованием новолаков, которые могут действовать как антиоксиданты, приводит к снижению восприимчивых к старению полярных ароматических соединений в связующем. Тиоэфир служит вторичным антиоксидантом, который очень эффективен против окислительного разложения углеводородов.Лабораторные испытания более 40 связующих в Университете Иллинойса показали, что связующее, модифицированное AOXADUR, дает самый низкий индекс старения и резкое увеличение высокотемпературной жесткости и существенное снижение низкотемпературной жесткости. Исследователи сообщили, что улучшение свойств связующего как при высоких, так и при низких температурах приводит к меньшему термическому напряжению и снижению потенциала растрескивания.

5. Выводы

Ниже приведены основные моменты, обсуждаемые в этой статье.(i) Старение асфальта - сложное явление, которое влияет на характеристики асфальтового покрытия, вызывая функциональное повреждение асфальта. Обычно это определяется как изменение реологических свойств асфальтовых вяжущих / смесей из-за изменений химического состава во время строительства и в течение срока его службы. На старение влияют внутренние и внешние переменные: внутренние переменные включают типы смесей асфальтового вяжущего, заполнитель, пустотность и толщину пленки, а внешние переменные - температуру смешивания и условия окружающей среды.Старение влияет на асфальтовое покрытие по-разному, делая его хрупким, менее устойчивым к повреждениям и менее прочным. В результате дорожное покрытие становится восприимчивым к разрушению и растрескиванию при низких температурах. (Ii) Сложная молекулярная структура асфальта и его химические компоненты изменяются в результате воздействия колебаний температуры и атмосферных условий, что приводит к изменению свойств асфальта. Основными механизмами старения асфальта являются окисление, улетучивание и стерическое упрочнение.Во время строительства битумное вяжущее подвергается более высокой температуре, что вызывает старение из-за окисления и потери летучих соединений. Напротив, длительное старение во время периодов эксплуатации происходит при более низких температурах, в первую очередь из-за механизма окисления. Стерическое упрочнение происходит во время длительного старения при относительно более низкой температуре. (Iii) Продолжительный нагрев в тонкопленочной печи и окисление продувкой воздухом являются основными методами имитации старения битумного вяжущего в лабораторных условиях. Наиболее часто используемые тесты для моделирования старения битумного вяжущего - это тесты RTFOT и PAV.В этом процессе оцениваемое асфальтовое вяжущее должно быть подвергнуто RTFOT для кратковременного старения при 163 ° C в течение 85 минут с последующим процессом PAV при 85 ° C в течение 5 дней для имитации нескольких лет полевого старения. ( iv) Стандартный протокол для моделирования старения асфальтовой смеси заключается в отверждении асфальтовых смесей в течение 4 часов при 135 ° C для кратковременного старения и 5 дней при 85 ° C для длительного старения. Однако эти стандартные протоколы старения имеют ограничения и не могут применяться в различных условиях окружающей среды.Следовательно, крайне желательна разработка и проверка новой процедуры моделирования старения, которая учитывает различные условия окружающей среды и свойства смеси, такие как содержание воздушных пустот. (V) Различные антиоксидантные добавки использовались для замедления старения асфальтового покрытия и, таким образом, улучшения характеристик гибкого дорожное покрытие и существенная экономия стоимости жизненного цикла. Одно из наиболее желательных свойств асфальтовой смеси - хорошо работать при более высоких температурах против образования колеи, а также при более низких температурах против растрескивания из-за усталости.Результаты экспериментальных исследований показали, что некоторые присадки хорошо работают при более высоких температурах, в то же время демонстрируя плохие характеристики при более низких температурах или наоборот. Необходимы дальнейшие исследования различных антиоксидантных добавок для получения более эффективной и устойчивой асфальтовой смеси, которая может одинаково хорошо работать как при высоких, так и при низких температурах.

Добавить комментарий